
NZ-COM

The Automatic Z-System

by

Joe Wright

User’s Manual

by

Jay Sage and Bridger Mitchell

Manual c© Copyright 1988, 1993
Jay Sage and Bridger Mitchell

Alpha Systems
711 Chatsworth Place
San Jose, CA 95128

Copyright Notice

NZ-COM— The Automatic, Dynamic Z-System for CP/M-2.2 computers — is c© Copyright 1988 by Joe Wright,
All Rights Reserved. The NZ-COM User’s Manual is c© Copyright 1988 by Jay Sage and Bridger Mitchell.
The ZCPR34 command processor is c© Copyright 1988 by Jay Sage, All Rights Reserved. JETLDR.COM is c©
Copyright 1988 Bridger Mitchell, All Rights Reserved.

Your single-user license entitles you to use NZ-COM on your computer(s), to make back-up copies for
your own use, and to demonstrate NZ-COM to others. You are not entitled to make copies of any NZ-COM
copyrighted files, or this manual, for others. That infringes our copyright and violates your licensing
agreement with us.

The copyrighted NZ-COM files are: NZCOM.COM, NZCOM.LBR, and MKZCM.COM. The copyrighted ZCPR34 files are
ZCPR34.LBR and NZCPR.ZRL.

Z-System tools and other files are included on the NZ-COM distribution disk as a convenience to the NZ-COM
licensee. Many of those files are copyrighted by their individual authors and may be copied for non-
commercial uses only.

Disclaimer of Warranty

The authors make no representations or warranties with respect to contents hereof and specifically
disclaim any implied warranties of merchantability or fitness for any particular purpose. This manual
and accompanying software are sold “as is” and the author will not in any event be liable for direct,
indirect, incidental or consequential damages resulting from any defect, error or failure to perform.

However, the authors warrant the diskettes on which the NZ-COM package is furnished, to be free from
defects in materials and workmanship under normal use for a period of ninety (90) days from the date
of delivery to you as evidenced by a copy of your purchase receipt.

Acknowledgments

The NZ-COM system was tested and improved by the suggestions of Cam Cotrill, Howard Goldstein,
Bridger Mitchell, and Jay Sage.

Z-System is an evolving operating system environment for Z80-compatible microcomputers to which many
have contributed. Development of NZ-COM has especially benefitted from the work of:

Michal Carson - VLU
Richard Conn - ZCPR v 3.0, HELP, TCSELECT
C. B. Falconer - LT
Rob Friefeld - SALIAS
Steven Greenberg - CRUNCH, UNCRUNCH, LDIR
Al Hawley - EDITNDR, SAVENDR
Bridger Mitchell - Z3PLUS, JETLDR
Bruce Morgen - LPUT, LGET
Paul Pomereau - EASE
Jay Sage - ZCPR v 3.3, v 3.4, ARUNZ, ZFILER, ZSHOW
Joe Wright - NZCOM

Trademarks

Z-System, ZCPR3 Alpha Systems
Z3PLUS, DosDisk, DateStamper Bridger Mitchell
CP/M, CP/M-Plus Digital Research, Inc.
WordStar MicroPro Corp.

PREFACE

Automatic, universal, and dynamic, the two new Z-Systems— NZ-COM
for CP/M-2.2 computers and Z3PLUS for CP/M-Plus computers — are
the result of the extensive cooperative efforts of Joe Wright, Bridger
Mitchell, and Jay Sage. All three authors worked together on many
aspects of both products; each has been particularly responsible for
one essential characteristic.

Joe Wright brought automatic operation. It was he who first conceived
of and demonstrated with Z-COM what many deemed impossible – a
version of Z-System that would install itself automatically on almost
any CP/M-2.2 computer. Yet, even after Z-COM’s success, it still ap-
peared that Z-System could never run on a CP/M-Plus computer with
its radically different command processor and banked memory operat-
ing system. Z3PLUS proves otherwise.

Bridger Mitchell made the systems universal. From his first exposure
to Z-System, he decried the complex, laborious effort required to make
each code module run with any particular implementation of the sys-
tem. He developed a universal ZRL file format and loader that would
allow a single file to adapt to any Z-System, no matter what its con-
figuration in terms of module addresses and sizes.

Jay Sage added dynamics. He conceived an operating system that can
change its size and character — right in the middle of a command line if
necessary — to suit the needs of a particular task. No longer must the
user live with a rigid compromise between operating system features
and memory consumption. The trade-off can be reconsidered at any
time.

These three authors played the primary role in the development of the
new systems and are responsible for equally fundamental developments
embedded in the new Z-System – the ZCPR version 3.4 command pro-
cessor (Jay Sage), the Z3PLUS loader and command processor (Bridger
Mitchell), and the NZ-COM loader (Joe Wright). But the full cast in-
cluded many other players, in fact, a whole community of them. It is
this shared participation in the ongoing development of Z-System in
general that makes the effort so satisfying and rewarding for all of us.

Contents

1 What is NZ-COM? 1

1.1 The Benefits of NZ-COM 2

1.2 The New Command-Processing Features 3

1.3 Other Major Features 4

1.4 Using This Manual . 4

2 Starting NZ-COM the First Time 7

2.1 Introduction . 7

2.2 Setting Up the Files . 8

2.3 Running NZ-COM . 9

2.4 Organizing Your Files 10

3 Getting Acquainted with Z-System 13

3.1 Creating an Alias . 13

3.2 The Available Commands 15

3.2.1 RCP Commands 15

3.2.2 FCP Commands 17

3.2.3 CPR Commands 20

3.2.4 Transient Commands 22

3.3 More About the System Configuration 23

ii

4 Learning More About Z-System 25

4.1 Resident NZ-COM Components 25

4.2 Automatic Commands 26

4.2.1 Extended Command Processor 26

4.2.2 Error Handler . 27

4.2.3 Command Shells 28

4.3 Other Z-System Tools 32

4.3.1 ARUNZ . 33

4.3.2 HELP . 35

4.3.3 Library Tools . 35

4.3.4 File Compression 36

4.3.5 Named Directory Tools 37

4.3.6 Other Tools . 38

4.4 Command Hierarchy . 38

4.4.1 Command Acquisition 39

4.4.2 Command Resolution 39

5 Getting More Out of NZ-COM 41

5.1 Alternative NZ-COM Invocation Commands 41

5.2 Customizing Your NZ-COM System 42

5.2.1 Temporary Changes 42

5.2.2 NZ-COM Descriptor Files 43

5.2.3 Modifying the Descriptor Files 44

5.2.4 Creating New Definitions with MKZCM 47

5.3 Loading New Systems 49

5.4 The System Cloning Option 51

5.5 Changing Systems on the Fly 52

5.5.1 Loading Rules 52

iii

5.5.2 Why Change Systems 53

5.5.3 Automating System Changes 54

5.5.4 Automatic Returns to CP/M 55

6 Technical Reference 57

6.1 Definition of File Types 57

6.2 Files Supplied with NZ-COM 57

6.2.1 NZ-COM System Files 57

6.2.2 Tools and Utilities 59

6.3 NZCOM Command Lines 61

6.3.1 Help Screens . 61

6.3.2 Loading NZ-COM Systems 62

6.3.3 Removing NZ-COM 66

6.3.4 Examples and Tips 66

6.4 Patching NZCOM.COM 68

6.4.1 The Internal Search Path 69

6.4.2 The Default Options 70

6.4.3 Startup Command Line 70

6.5 The JetLDR Program 73

6.6 The MKZCM Command Line 74

6.7 Theory of Operation . 74

7 Bibliography 77

7.1 The Z-Nodes . 77

7.2 The Computer Journal 78

7.3 Other Published Information 79

iv

Chapter 1

What is NZ-COM?

This manual has to address two audiences: those who are already run-
ning a version of what is known as the ZCPR3 operating system or
Z-System and those to whom this is all new. Since from our own ex-
perience, there is always more to learn about Z-System, we have no
qualms about addressing the manual to those in the second group. To
the best of our abilities, we have tried not to assume on the part of the
reader any prior knowledge about Z-System. Experienced Z-System
users may want to skip or skim some sections. On the other hand,
little tidbits or new insights may await you in any section.

NZ-COM — formally known as Z-COM version 2 — is one of the most
exciting and remarkable developments in the history of microcomputer
operating systems. Your computer’s operating system is its master
program, present from the moment you turn on the power. It interprets
commands, loads and executes programs, and manages the disk files
and connections to your terminal, printer, and modem.

Normally, a computer’s operating system is a static entity. You “boot”
up the computer, and there you have the operating system, fixed and
immutable. Few computers offer more than one operating system.
With those that do, the only way you can get a different operating
system is to “reboot”, which generally involves inserting a new boot
diskette and pressing the reset button. And never do you get to define
the characteristics of that operating system. You have to accept what
the manufacturer offers you.

With NZ-COM the operating system becomes a flexible tool just like an

1

2 CHAPTER 1. WHAT IS NZ-COM?

application program. You can change the configuration of the operating
system at any time, even right in the middle of an automated command
sequence. You can do it manually, or operating system features can be
employed to do it automatically as required.

You can change the whole operating system or just a part of it. Would
you like a new command processor? No problem. With a simple com-
mand, NZCOM will load it — no assembly or configuration required.
That new command processor will continue to run until you load an-
other one. Want to have a different set of built-in (resident) commands?
Again, no problem; NZCOM can load them in a jiffy. NZ-COM offers you
a whole new world of flexibility and adaptability. It makes it easy for
you to experiment and learn.

The basic operating system provided by NZ-COM is the widely popular
ZCPR3 or Z-System, whose features will be described at some length
throughout this manual. Until you try NZ-COM, it is almost impossible
to imagine how easy it is to design and run the Z-System of your choice.
Gone are the days of taking source code (no source code is needed),
editing configuration files (you don’t need an editor), assembling (you
don’t need an assembler), and patching (you don’t have to know how to
use the arcane SYSGEN and DDT programs). Simple relocatable object-
code files for a particular module can be used by anyone on any system.

We hope that NZ-COM will open the world of Z-System to the general
community, to those who have no interest in learning to assemble their
own operating system or do not have the tools or skills. If you are at
all intrigued by the Z-System (how could you not be?) and have a
Z80-based computer running the CP/M-2.2 operating system,1 now is
your chance to experiment.

1.1 The Benefits of NZ-COM

Here are some of the general benefits that you will derive from NZ-COM.

• The new command processing system is much more convenient,
powerful and flexible. You can readily customize it to your own
style and habits.

1If you have a CP/M-Plus computer, order Z3PLUS, the automatic Z-System for
CP/M-Plus computers.

1.2. THE NEW COMMAND-PROCESSING FEATURES 3

• Hundreds of excellent programs written for Z-System computers
will now run on your computer.

• You can obtain public-domain and user-group Z-System pro-
grams from Z-System bulletin board systems (called Z-Nodes)
and use them.

• New, high-quality user-group and commercial software is contin-
ually being written for Z-System computers, programs that you
will finally be able to run.

• The NZ-COM system is ready-to-run. No assembly or technical
installation is required.

• You can remove NZ-COM at any time and later restart it.

1.2 The New Command-Processing Fea-
tures

The central function of the NZ-COM system is to enhance the control and
processing of the commands that direct the CP/M system. It provides

• convenient editing of mistyped commands

• recall of previous commands for re-use, correction, or modification

• conditional execution of a sequence of commands, where execu-
tion can depend on:

– the success/failure of programs previously executed

– the availability and characteristics of necessary files

– the user’s privileges and other system characteristics

– run-time input from the user

• named directories to conveniently segregate files and optionally
protect directories with passwords

• command aliases, single commands that cause an entire command
script to execute automatically

4 CHAPTER 1. WHAT IS NZ-COM?

1.3 Other Major Features

In addition to command processing, NZ-COM provides

• a standardized method of using a terminal’s full-screen capabili-
ties, available to all applications wishing to use them

• a programming and user environment that fosters innovation and
cooperation

• portability of programs among a wide variety of Z80-compatible
computers

Taken together, these features mean that you can benefit from a very
rich collection of programs, even if they were not written for your par-
ticular model of computer.

1.4 Using This Manual

There is a lot of material in this manual, and you will be glad to know
that you do not have to read and absorb all of it before you can begin
to make effective use of NZ-COM!

Chapter 2 tells you the mechanics of setting up the system and getting
it running. Chapter 3 shows you the basics of what you can do with
the system. It demonstrates the use of a number of the new commands
and includes examples. These two chapters are essential reading.

Chapter 4 contains a lot more information about what Z-System is
and about some of its most powerful features. In order to really take
advantage of Z-System, you will certainly want to read this chapter
before very long.

Chapter 5 describes some of the advanced capabilites of NZ-COM, par-
ticularly how to tailor the system to your personal needs and tastes.
You probably will not be ready to make effective use of the material in
this chapter until you have acquired some experience with Z-System.
We suggest, though, that you skim this chapter just to see what is
there, so that you have some inkling as to what advanced capabilities
are available to you.

Chapter 6 is primarily a technical reference. It summarizes and collects
material that appears elsewhere in the manual, such as the syntax for

1.4. USING THIS MANUAL 5

commands and the names and functions of files supplied with NZ-COM.
It is the most technical of all the chapters. However, there is some
material that appears only there, and at some point you should at
least skim through the chapter.

Finally, Chapter 7, the Bibliography, contains references to other
sources of useful and helpful information about NZ-COM and the
Z-System. Every user should read this chapter.

As you venture forth with NZ-COM, we wish you an exciting and enjoy-
able experience. We hope that this manual and your experimentation
with NZ-COM will help you understand better how computers actually
work, and make your own computer easier to use, more productive, and
more fun as well!

6 CHAPTER 1. WHAT IS NZ-COM?

Chapter 2

Starting NZ-COM the
First Time

2.1 Introduction

A key characteristic of the Z-System is its flexibility. Within a very
broad range, you can customize it to your own needs and preferences.
Of course, this flexibility means that there isn’t a single “standard”
setup. Getting started is very easy, but to take full advantage of the
system you will have to take time to learn about its options and make
some choices.

In fact, the Z-System is so flexible that veteran users are regularly dis-
covering new capabilities that weren’t envisioned in the original design.
This dynamic, innovative quality is unusual for a microcomputer oper-
ating system, and it attracts both users and developers to continually
make improvements.

To get you started, we’ve established a basic start-up configuration. It
includes all available Z-System features and will allow you to become
familiar with them. A full-up system like this one reduces your tran-
sient program area or TPA (the memory space available to application
programs) by 5.5K. Later (p. 44) you will learn how to create cus-
tom configurations so that you can make your own trade-offs between
operating system features and memory consumption and can create
Z-Systems that use as little as 1K of TPA.

7

8 CHAPTER 2. STARTING NZ-COM THE FIRST TIME

This manual is only an introduction to the Z-System. As you begin to
make use of your new NZ-COM system, you will want to become familiar
with the earlier, more extensive manuals and other written materials
that cover the Z-System in greater detail. Several of these are listed in
the Bibliography (Ch. 7).

2.2 Setting Up the Files

NOTICE

NZCOM.COM, NZCOM.LBR, MKZCM.COM, ZCPR34.LBR, and the
NZ-COM documentation files and manual are copyrighted and
are licensed for a single user only. It is illegal to copy or
distribute these files or printed documentation to any other
person. Many of the companion Z-System utilities included
with NZ-COM may be reproduced for the non-commercial use
of other Z-System users. See the copyright notice page at
the front of the manual for specifics.

First, before you do anything else, make a complete, work-
ing copy of the NZ-COM distribution disk and put the original
disk away in a safe place. Then put the working copy into one
of your auxilliary disk drives (not drive A) and log into it. The file
RELEASE.NOT, if present, contains additional information that was not
available at the time this manual was prepared. You should examine
it briefly before proceeding.

Next, use the TCSELECT utility to create a terminal-capability file that
matches your terminal or computer. There is a suitable file for almost
every reasonably popular terminal. To do this, type

TCSELECT myterm<cr>

substituting for “myterm” an appropriate filename of your choice for
your terminal.1 TCSELECT will display menus of available terminals.
Find your terminal or computer and select it. Once you have confirmed
the choice, TCSELECT will write out a file called “myterm.Z3T”.

1If you use the name “NZCOM”, then it will later be loaded automatically, but it
will spoil our plan to teach you how to do it with an alias (p. 14).

2.3. RUNNING NZ-COM 9

If for some reason your terminal or computer is not on the menu,
you should first check the manual for your equipment to see if it
uses the same screen codes as another, more popular terminal. If
you are still unsuccessful, you should contact either the dealer from
whom you purchased NZ-COM or one of the Z-Helpers named in the
file ZHELPERS.LST. They will probably be able to assist you in creating
the Z3T file. In the meantime, you can continue to use NZ-COM with-
out defining a terminal, but you will not be able to use programs that
require terminal information, such as SALIAS, SHOW, and ZFILER.

At this point it is assumed that you are running your computer with
the standard CP/M-2.2 operating system, possibly with a replacement
command processor (such as ZCPR1). Although NZ-COM can run under
a manually installed Z-System, this wastes memory and is not recom-
mended.

Next, using PIP or another file-copying program, copy the following
files to user area 0 of drive A:

NZCOM.COM ARUNZ.COM EASE.COM

NZCOM.LBR ALIAS.CMD ZFILER.CMD

MKZCM.COM LX.COM SHOW.COM

SALIAS.COM IF.COM myterm.Z3T

SDZ.COM ZEX.COM ZEX.RSX

LDIR.COM

Finally, you should copy one of the two versions of ZFILER. This pro-
gram makes use of video highlighting on the screen. Because reverse-
video and dim-video are so different, two separate versions of ZFILER
are provided: ZF-REV.COM for reverse video and ZF-DIM.COM for dim
video. You should choose the appropriate one for your type of terminal.
For example, if your terminal uses dim-video highlighting, you would
use a command line like the following:

PIP A:ZFILER.COM=ZF-DIM.COM<cr>

2.3 Running NZ-COM

Now you are ready for the quick two-step process of defining and loading
the standard NZ-COM system for your computer. The definition step is
performed by the program MKZCM (MaKe ZCoM). Just log into drive A
and enter the command

10 CHAPTER 2. STARTING NZ-COM THE FIRST TIME

MKZCM<cr>

You will be presented with a menu screen that you will learn to use
later (p. 47) to define custom NZ-COM systems. For now, we will just
accept the default values. Press the “S” key for “Save”, and, when
prompted for a file name, enter “NZCOM”. This is the name that NZCOM
uses for its default definition. MKZCM will generate two files: NZCOM.ZCM
and NZCOM.ENV. The significance of these files will be explained later
(p. 43).

Now enter the command

NZCOM<cr>

Your new NZ-COM system will be generated, loaded, and run automati-
cally. The first time you do this NZ-COM will display

STARTZCM?

You can ignore this message for now; it means that NZ-COM is unable
to find the file STARTZCM.COM. We will take care of that on page 13.

The system is complete, except that it doesn’t yet know what kind
of terminal you have. We will now exhibit an additional capability of
NZCOM by having it load the terminal descriptor. Type

NZCOM myterm.Z3T<cr>

That’s all you have to do to get NZ-COM running! You can now go on
to the next chapter to learn more about the system.

2.4 Organizing Your Files

After you have learned about NZ-COM and Z-System and are ready to
use them on a regular basis, you will want to organize the files on your
disks.

If you have a hard disk or large-capacity floppy disk you will want to
keep most or all of your NZ-COM and Z-System tools in directory A0:
and make that your root directory (the last directory on your search
path). Some Z-System users prefer to use directory A15: for these

2.4. ORGANIZING YOUR FILES 11

files, but NZCOM, as distributed, is designed to use A0: as the root of
its path.

If you have smaller disks, put just the most-used files there and keep a
separate Z-Tools disk at hand. Once NZ-COM is loaded, the NZCOM.COM
and NZCOM.LBR files are only needed again if you want to change the
system configuration, so they could be relegated to a different “boot
disk”.

12 CHAPTER 2. STARTING NZ-COM THE FIRST TIME

Chapter 3

Getting Acquainted with
Z-System

We suggest that you actually carry out the following steps to be-
come familiar with a few of the commonly used features of the NZ-COM
Z-System.

3.1 Creating an Alias

An alias is a single word (a command) that stands for a longer or com-
pound command. To create an alias, run the SALIAS (Screen ALIAS)
program. We’ll create a startup alias, called STARTZCM, that will auto-
matically install your terminal file in the NZ-COM system the next time
you type NZCOM. (You’ve already seen that command name, STARTZCM;
it appeared on the screen followed by a question mark when you ran
NZCOM the first time.)

Type

SALIAS STARTZCM<cr>

to start the SALIAS program and to prepare the STARTZCM alias. You’ll
notice right away that this utility, like many Z-System tools, makes
effective use of the display features of your terminal (and that’s why it
was important to select a terminal-capabilities file at the outset).

13

14 CHAPTER 3. GETTING ACQUAINTED WITH Z-SYSTEM

The SALIAS program is an alias editor, a kind of wordprocessor for alias
scripts. You type in the text of the alias script and use control keys
to edit your input. Most of the keys, including those for moving the
cursor, are the ones used in WordStar. If you type Control-J, you will
see a list of all of the command keys.

For this alias, the only command line you need to enter is

NZCOM myterm.Z3T /Q<cr>

We added the “/Q” quiet option to suppress the extensive information
that NZCOM can display when it loads something. Now, type Control-K
followed by Control-X to exit and save the new file.

Try executing this alias now by typing

STARTZCM<cr>

You’ll see from the display that it indeed runs the NZCOM program and
loads the Z3T file (again). So far this just saves us a little bit of typing.
However, we selected this exact name for the alias because NZCOM itself
will execute this alias automatically the next time you load it. Let’s
test things so far. Type

NZCPM<cr>

Yes, the NZ-COM system is gone, and the standard CP/M-2.2 command
processor is once again active. Now type

NZCOM<cr>

to restart the NZ-COM system. This time it will automatically load your
Z3T terminal file using the new STARTZCM alias.

The startup alias you just created is quite simple but nonetheless useful.
An alias, however, can do much more. It can be a whole sequence of
commands, with symbolic parameters for filenames, directories, and
command line parameters. One of the things the startup alias can
do, for example, is immediately set up a command search path that
is different from the default path to which NZCOM.COM is configured.
For a more elaborate example, see the alias created on page 19. For
more information, consult the references in the Bibliography. And keep
SALIAS in mind. It will come in handy for automating a wide variety
of tasks on your computer.

3.2. THE AVAILABLE COMMANDS 15

3.2 The Available Commands

Now type

H<cr>

This will display all of the in-memory commands in the current
Z-System. The screen will show a display like that in Table 3.1.

FCP

IF AND OR ELSE FI

IFQ XIF ZIF

CPR

GET GO JUMP

RCP

CLS ECHO ERA H NOTE

P POKE PORT R REG

SP TYPE WHL WHLQ

Table 3.1: Resident commands displayed by the H command.

The commands that are displayed are the ones in memory at the time
the H command is given. They will vary according to which FCP (flow
command package), RCP (resident command package), and CPR (com-
mand processor) have been loaded. As you see, the H command (short
for “HELP”) is in the RCP package.

Later you will see that you can create versions of NZ-COM that use
less memory by not including an RCP. Also, some RCP packages do not
support an H command. In these cases, the SHOW command, described
on page 23, can be used to show this (and much more) information.

3.2.1 RCP Commands

Let’s look at the RCP (resident command package) commands first.
We’ve just used the H command. Try another one by typing

ECHO This is a test.<cr>

16 CHAPTER 3. GETTING ACQUAINTED WITH Z-SYSTEM

Before we go on, we should point out that a semicolon (“;”) is used to
separate multiple commands on a single line. Try

ECHO Test 1;ECHO Test 2;ECHO Test 3<cr>

ECHO is a simple but important command that is often employed to
tell the user what is happening while sequences of commands are be-
ing processed by a script. We will see an example of this on page 19.
Because command lines are always converted to upper case, your mes-
sages appeared in capital letters. The ECHO command will interpret
the character sequence “%>” to mean “change to lower case” and the
sequence “%<” to mean “change to upper case.”

Now try the SP command, which tells you how much space remains on
a disk:

SP<cr>
SP B:<cr>

The P command peeks at memory. Try

P 100<cr>

This is not too informative if you don’t read computer code, but it is
very useful and handy if you do. Now try the POKE command:

POKE 100 "This is a poke test<cr>

Be sure you typed the quotation mark before the text; it tells POKE
that you are giving it text and not hexadecimal numbers. Now peek at
the result:

P 100<cr>

Obviously, you want to reserve POKEs for special purposes, when you
know you won’t damage something (see p. 22). You can peek with
abandon, however.

ERA should be familiar; it erases files. TYPE displays a file on the screen.
CLS clears the screen (handy in scripts). NOTE is a do-nothing command
used in scripts to include comments. PORT is a combination peek/poke
for the computer’s input/output ports; it reads a data byte from or

3.2. THE AVAILABLE COMMANDS 17

writes a data byte to a specified I/O port. As with the poke command
for memory, it should be used with great caution.

The R command resets the disk system; it is like a Control-C, but it can
be included in a multiple command sequence. REG displays or modifies
the Z-System software registers, which are used to communicate values
between programs. The WHL and WHLQ commands are used with the
Z-System security byte called the “wheel byte”. You will find that
many commands, especially risky ones like ERA, will not work when the
wheel byte is off. WHLQ (WHeeL Query) reports the status of the wheel
byte (try it!). WHL, when followed by the correct password, turns on the
wheel byte; otherwise it turns it off. The default password is SYSTEM.1

3.2.2 FCP Commands

The Z-System can process entire sets of commands in an intelligent,
automated way using the commands in the flow command package
(FCP). Flow control takes some effort to understand, but it is so powerful
and useful that we think you’ll find it worth the effort to learn about it.
In a nutshell, the purpose of flow control processing is to enable your
commands to perform multiple levels of IF-ELSE-ENDIF testing (just
as in high-level programming languages) in order to control which of a
number of alternative commands are executed.

The main concept you need to grasp is that of “flow states”. When
Z-System first starts to run, no flow state is active (we call this the
“null” flow state). Under control of the commands in the FCP module,
up to 8 levels of flow state can become active. Each level can be either
true or false (the null flow state acts like a “true” flow state). When
the current flow state is true, commands execute in the normal fashion;
when the current flow state is false, the command processor ignores all
commands except those in the FCP. You will see how this works with
some examples in a moment.

The IF command is issued with some type of test expression, which is
evaluated as either “true” or “false”. For either value, a new level of
flow state is activated. If the previous flow state was false, then the
new flow state is always made false, no matter what the result of the
conditional test was. On the other hand, if the previous flow state was

1If you need to change it, the file NZRCP.ZRL in NZCOM.LBR can be patched. With
your favorite patch utility, search for the string “SYSTEM” and change it as you like.
If you need help doing this, consult your dealer or a Z-Helper.

18 CHAPTER 3. GETTING ACQUAINTED WITH Z-SYSTEM

true, then the new flow state will take on the value resulting from the
test.

Here are some examples of conditional tests that can be performed by
the IF command:

IF ERROR tests whether a previous program
set the program error flag

IF REG 3 > 1 tests value of a user register
IF INPUT RUN WS? displays the prompt “RUN WS?”

and waits for user response
IF ∼EXIST DIR:FN.FT tests for (non)existence of a file

Enter the command line

IF //<cr>

to get a condensed listing of the test conditions that can be used. As
you can see, the number is quite large. Later you can experiment with
them. Only the first two letters are actually used to determine the
test condition (thus EX is the same as EXIST), and a tilde (“∼”) prefix
reverses the sense of the test. Most of the tests are performed by the
program IF.COM, which is loaded and run automatically by the FCP.

The IFQ (IF Query) command is included in the FCP to help you visu-
alize the flow state and learn how to use flow control. We will use it
now with some examples.

First try out the IFQ command. Unless you have already been exper-
imenting on your own (in which case you should run the command
“ZIF<cr>” to return the system to the null flow state), you should see
the message “IF None”, telling you that there is no active flow state
(i.e., the “null” flow state). Now enter the command:

IF T<cr>

This test, like the IFQ command, is included largely as a learning aid.
As you can probably guess, it returns a value of true. Now run IFQ
again. The display will read “IF T”, indicating that one flow state level
is active and that it is true. Try entering a command, such as “ECHO
TESTING<cr>” and note that it executes normally.

Now enter the command line:

3.2. THE AVAILABLE COMMANDS 19

IF F;IFQ<cr>

The display will show “IF FT”. This tells us that two levels of flow
state are active, with the current one false and the one under it true.
Now try to execute the “ECHO TESTING<cr>” command. It is ignored.

The FI command, which is IF spelled backwards, terminates the cur-
rently active flow state and returns the system to the previous level (or
to the null state). Enter the command line

FI;IFQ<cr>

several times and watch how the message changes. Once you are back
in the null flow state, enter the command

IF T;IF F;IFQ<cr>

to get us back to where we were (with the current flow state false and
one underlying flow state that is true).

Now we will learn about the ELSE command, which reverses the current
flow state providing the underlying flow state is true. Enter

ELSE;IFQ<cr>

and note that the display has changed from “IF FT” to “IF TT”. Com-
mands will now run again. Enter it a few more times, and note how it
toggles the flow state.

At this point you know enough about flow control and the FCP com-
mands to experiment on your own. When you are finished, enter
“ZIF<cr>” to zero out the flow state.

Before leaving this subject, we would like to take you through one last
example, one that will give you a hint as to how flow control can be
combined with aliases to make very powerful commands.

Use SALIAS to create an alias called TEST by entering the command

SALIAS TEST<cr>

When the input screen appears, enter the following sequence of com-
mands:

20 CHAPTER 3. GETTING ACQUAINTED WITH Z-SYSTEM

IF EX $1

ECHO FILE $1 EXISTS

IF EQ $1 *.COM

ECHO COM %>FILE: %<YES
ELSE

ECHO COM %>FILE: %<NO
FI

ELSE

ECHO FILE $1 NOT FOUND

FI

Note that we are using the special character sequences that ECHO rec-
ognizes as signals to change between upper and lower case (see p. 16).
When you are done typing in the commands, press Control-K Control-I.
Note how SALIAS conveniently indents the commands to show the nest-
ing of flow states. Now save the alias by entering Control-K Control-X.

The expression “$1” in the alias stands for the first item given on the
command after TEST when the alias is used. Try entering the following
commands and see what happens in each case:

TEST NZCOM.COM<cr>
TEST NZCOM.LBR<cr>
TEST NOFILE.JNK<cr>

3.2.3 CPR Commands

The standard version of the command processor has only three com-
mands. Most of the code in the CPR is needed to perform sophisticated
processing operations on your commands rather than to execute com-
mands of its own. Most of the resident (in-memory) commands are
provided by the RCP, which offers you the advantage of being able to
change the commands by loading different RCP modules depending on
your current needs.

The commands in the CPR are ones that make use of code already
there for other purposes. GET and GO/JUMP are basically the two halves
of the normal load/execute process that is performed whenever you
specify a command that refers to a COM file. All three commands can
be dangerous; if used incorrectly they can result in a system crash that
will require rebooting. Used correctly, they can be very powerful and
handy.

3.2. THE AVAILABLE COMMANDS 21

The GET command performs only the loading process. It offers more
flexibility than the normal command loader. First, you specify the
memory address to which the file is loaded, and, secondly, any type of
file (not just a COM file) can be loaded. There is nothing to stop you
from loading a program to a wrong address (even an address where the
operating system resides!) or from loading a file that is not a program.

Try entering the command line

GET 200 NZCOM.LBR;P 200<cr>

The library will be loaded into memory starting at 200H, and the peek
command will show you the beginning of the file. If you have ever
wondered what a library file really looks like, now you can see. GET
and P together can make a handy learning tool.

Just as GET performs only the loading of a file, GO and JUMP perform only
the execution of what is already in memory. GO automatically executes
whatever is at address 100H. JUMP is similar but lets you specify the
execution address (GO is equivalent to JUMP 100). For normal COM-
file programs, the combination of GET and GO performs an ordinary
execution. Thus the command sequence

GET 100 SDZ.COM;GO *.LBR<cr>

does exactly2 the same thing as

SDZ *.LBR<cr>

Why, then, would one ever want to use these separate commands? We
will give two examples. First, the GO command can be used to execute
a program repeatedly without having to spend the time loading the file
each time from disk. Try

SDZ *.COM<cr>

and then

GO *.LBR<cr>

2Well, almost exactly.

22 CHAPTER 3. GETTING ACQUAINTED WITH Z-SYSTEM

Caution: some programs are not designed to be reexecuted and could
cause trouble if used this way. Most Z-System tools can be reexecuted,
and those that cannot often exit gracefully at least. Other programs
may be less forgiving, so you should experiment cautiously.

A second example of the use of GET and GO is the technique called “GET,
POKE, and GO” or simply POKE&GO. The idea here is to load a file using
the GET command, modify it using the POKE command, and then run it
using the GO (or JUMP) command. For example, if your wordprocessor
(let’s say it is called WP.COM) keeps its right margin value at address
83BH and normally uses a value of 76, you could make an alias named
WP60 with the following alias script to give you a version with a right
margin value of 60:

GET 100 WP.COM;POKE 83B 3C;GO $*<cr>

Note that the poked value is given in hexadecimal form (3CH=60) and
that the expression “$*” in an alias script is replaced by whatever the
user put on the command line after the name of the command. Thus
the command

WP60 NEWFILE.DOC<cr>

would run WP with the file NEWFILE.DOC but with a right margin of 60.
To do this without Z-System, you would have to have a second version
of the entire wordprocessor. An SALIAS alias is only 1K long; an ARUNZ
alias (p. 33) for this function takes only about 40 bytes of disk space.

3.2.4 Transient Commands

“Transient command” is the name Digital Research (publisher of CP/M)
gave to commands that do not reside in memory but are loaded from
disk. These files all have a file type of COM.

In addition to the normal COM files supported by CP/M, there are sev-
eral special types of COM file supported by Z-System. These files are
designated as type-1, type-3, and type-4.3

Type-1 files are similar to standard CP/M COM files except that they have
a special header at the beginning into which the command processor

3Yes, there are type-2 files also, but they are rarely used today.

3.3. MORE ABOUT THE SYSTEM CONFIGURATION 23

inserts the address of what is called the Z-System environment descrip-
tor. This is an area in memory that contains a complete description
of the Z-System configuration. With that information, a program can
make use of the special Z-System facilities.

Type-3 programs are similar to type-1 programs except that, unlike
standard CP/M programs, they do not necessarily get loaded to and
run at the standard address of 100H. Their execution address is in-
cluded in the special header, and the command processor automatically
loads them to the address specified there. For example, the program
ARUNZ.COM included in the NZ-COM package is a type-3 program that
runs at 8000H.

Type-4 programs are special Z-System programs derived from PRL (so-
called Page ReLocatable) files. They contain relocation information to
allow them to run at any address. The command processor automati-
cally calculates the highest address in memory at which they can run
with the existing configuration and then loads and runs them at that
address.

The type-3 and type-4 programs were invented for transient programs
that function as resident parts of the system (e.g., extended com-
mand processors, shells, and error handlers) or as transient versions
of common resident commands (e.g., ERA.COM or REN.COM). Since the
Z-System on its own often invokes these commands automatically, you
cannot always predict when one of them will run, and it is handy if they
do not interfere with the lower parts of memory where user programs
run.

The special Z-System programs usually cannot run properly under
CP/M. Because they were designed to run on computers with perma-
nently installed Z-Systems, most of them do not include code to pre-
vent attempts to run them under ordinary CP/M. Most of the ones
supplied with NZ-COM, however, will terminate gracefully from such an
attempt. Some of them will display a message; others will simply cause
a warmboot.

3.3 More About the System Configuration

We mentioned earlier that under some circumstances you would not
be able to use the H command to see what resident commands are
available. The Z-System utility program SHOW can always be used to

24 CHAPTER 3. GETTING ACQUAINTED WITH Z-SYSTEM

display this and a great deal of other information about your system.
The best way to learn about the configuration of your NZ-COM system
is to run SHOW and experiment with its menu selections. Some of the
things you can do with SHOW are:

• display the memory map of the system

• show the commands supported by the CPR, FCP, and RCP, with an
indication of which commands require the wheel byte to be on

• show the special features implemented in the CPR

• show the command search path and directory names

• display the information in the shell stack and message buffer

Chapter 4

Learning More About
Z-System

The Z-System divides into

• resident (in-memory) components

• automatic tools and shells — the special programs that the com-
mand processor runs for you

• other tools — programs that are controlled by or make use of the
resident components

The components included in the NZ-COM package and described below
constitute a fairly basic set, and yet they are already rich in features.
The following descriptions are included here for your reference, but you
certainly don’t need to absorb all of it at the first reading.

4.1 Resident NZ-COM Components

• The ZCPR34 command processor: It interprets commands and
loads programs.

• An RCP (Resident Command Package): It includes an extended
set of commands (see p. 15) that can be quickly changed.

25

26 CHAPTER 4. LEARNING MORE ABOUT Z-SYSTEM

• An FCP (Flow Command Package): It tests logical conditions and
manages the flow state of the system so that commands can be
conditionally executed (see p. 17).

• An IOP (Input/Output Package): It allows I/O drivers to be
loaded as needed to provide such facilities as keyboard macro
definitions or redirection of screen or printer output to a disk
file.1

• An NDR (Named Directory Register): It contains a table that
associates directories (drive/user-number pairs) with names and
optional passwords.

• A PATH: It indicates the sequence of directories to be searched to
find a program.

• A Z3T terminal descriptor: It contains the control sequences
needed by your terminal for positioning the cursor, clearing the
screen, etc.

• Other components of the Z-System environment: These include
the command-line buffer, a message buffer, a shell stack, the wheel
byte, the external file control block, and a command processor
stack.

4.2 Automatic Commands

Several Z-System tools are automatically caused to execute under spe-
cific conditions.

4.2.1 Extended Command Processor

When the command processor cannot process a command as either a
memory-resident command or a disk-resident file, then it will pass the
command to another program called the Extended Command Processor
(ECP). The standard NZ-COM version of ZCPR34 always tries to load as
the ECP a program with the name CMDRUN.COM in the root directory (the
final directory in your search path). The distributed NZ-COM system
includes two programs that are often used as ECPs:2

1This subject is not covered any further in this manual. Contact the dealer from
whom you purchased NZ-COM for information about available IOPs.
2There is even a way to have both of them function together as the ECP.

4.2. AUTOMATIC COMMANDS 27

• ARUNZ (Alias-RUN-for-Z-system), which performs a function
very similar to that of the aliases created by SALIAS, except that

– a large number of aliases can be defined in a single text file
called ALIAS.CMD, and

– much more extensive parameter processing is supported.

ARUNZ can function as a very powerful command generator and
translator.

• LX (Library eXecutive), which gets commands out of a library
called COMMAND.LBR. Putting COM files into COMMAND.LBR saves
both directory space and file space on the disk. LX is especially
useful on computers with low capacity diskettes or diskettes whose
format allows too few file names in a directory.

To make one of these programs function as your extended command
processor, copy it to the filename CMDRUN.COM.3 For example, to use
ARUNZ as the ECP, type the command

PIP CMDRUN.COM=ARUNZ.COM<cr>

You should do that now, since in a little while (p. 33) we will be using
ARUNZ for some examples. Later, if you want to try using LX instead,
type the command:

PIP CMDRUN.COM=LX.COM<cr>

4.2.2 Error Handler

When the command processor cannot process a command because the
extended command processor cannot be found or because the extended
command processor also cannot process the command, then the CPR
will invoke an error handler. Advanced Z-System error handlers can
display information about what is wrong with the command and can
allow you to edit the command line to correct any mistakes.

Any error handling command line can be loaded with the ERRSET utility
(not supplied). However, most error handlers will install themselves

3It must be in the root directory (last element on the path). Unless you have
changed it, this will be A0, but you can run the PATH command to see what the root
is.

28 CHAPTER 4. LEARNING MORE ABOUT Z-SYSTEM

automatically if you invoke them manually as a command (they can
tell whether they have been invoked by the user or by the CPR). The
NZ-COM package includes the EASE error handler, which is described in
the next section.

4.2.3 Command Shells

Shells are tools that are automatically executed whenever the command
processor has completed all the commands it was given — including
batch commands from SUBMIT and ZEX — and is ready for new com-
mand input. If no shell is loaded, then the normal prompt will appear
on the screen, and the user will be asked to enter the next command.
If a shell is active, then it will run instead. Most shells generate com-
mands for the user and pass them on to the command processor. We
have included several shells with the NZ-COM system.

The shell command line (sometimes along with other information used
by the shell) is kept in a memory buffer called the “shell stack”. The
shell stack in the NZ-COM system can normally hold up to four shell
command lines, each up to 32 bytes long, but these values can be
changed using MKZCM. The command that was placed on the stack most
recently is the active shell command. When that shell is terminated
(usually by a special command response to the shell’s input request),
its command line is removed from the shell stack (the common term
is “popped”), bringing the next most recently invoked shell to the top
of the stack and making it active. This mechanism allows shells to be
“nested”.

The EASE Error Handler and Shell

EASE (Error And Shell Editor) is a perfect example of the shell con-
cept. It is also particularly handy. When EASE becomes active, it puts
up a prompt like the one normally presented by the CPR but with an ex-
tra “>” to remind you that EASE is running. There are three important
differences, however.

1. When you enter a command, you have at your disposal a very
powerful editor, what amounts to a wordprocessor for the com-
mand line. You can move forward and backward through the
command line and can insert and delete characters.

4.2. AUTOMATIC COMMANDS 29

2. When you issue your command by pressing the carriage return
key, the command line is saved in a history file before it is passed
to the command processor.

3. Commands entered in the past can be retrieved from the history
file, edited as you wish, and then executed again.

After you see how convenient these features are, you may want to add
EASE to the end of the list of commands in your STARTZCM startup alias.

EASE is not only a shell but an error handler as well. Combining these
functions in a single program was a natural thing to do with EASE,
since editing a new command line and correcting an old, mistaken one
involve the same functions.

The version of EASE included with NZ-COM is a type-3 program (see
p. 23) that executes at an address of 8000H (32K). As a result, unless
the user’s last program was longer than 32K, EASE will not interfere
with rerunning it using the GO command.

EASE is installed as both a shell and an error handler by entering the
simple command4

EASE<cr>

We recommend that you do this now and try some examples. Type in
the following commands one at a time:

ECHO THIS IS COMMAND 1<cr>
SDZ *.COM<cr>
ECHO THIS IS COMMAND 3<cr>
LDIR NZCOM<cr>

When the next prompt appears, type Control-B (for Back). The previ-
ous command will appear. Try entering Control-B several more times.
Then try Control-N (for Next); it will move you forward through the
history. Continue moving through the history until the command “ECHO
THIS IS COMMAND 3” is at the prompt.

Now we will edit the command. Most of the editing command keys are
those from WordStar. Use Control-S and Control-A to move left one
character or one word. Use Control-D and Control-F to move right.

4EASE can be installed as a shell only using “EASE S” or as an error handler only
using “EASE E”.

30 CHAPTER 4. LEARNING MORE ABOUT Z-SYSTEM

When you get to the “3”, enter Control-G to delete (Gobble) it. Then
enter “5” and a carriage return.

Now we will try a recall search. At the prompt, type in only the
letters “ECHO” (no carriage return). Then press Control-O. Note that
EASE has located for you the most recent command line that started
with “ECHO”. Press Control-O again. EASE will find the next previous
occurrence. This feature is remarkably handy!

EASE will continue to record all commands (except very short ones)
until you remove it (by typing Control-Q Control- [underscore]). The
history is stored in the file EASE.VAR. This file will continue to grow,
and from time to time you might want to erase it (but not while EASE
is running) and start over. There is also a program called VARPACK that
can pack the VAR file, keeping only a fixed number of recent commands.

You can generate a file that lists all of the control keys used by EASE
by entering the command

EASECMD EASE<cr>

This will produce the file EASE.CMD, which you can type or print.

The ZFILER Shell

ZFILER illustrates how a shell can change the user interface completely.
Instead of a command line, it provides a “point-and-shoot” environ-
ment. To see ZFILER in action now, enter the command

ZFILER<cr>

You do not have to remove EASE before running ZFILER. Shells can
be “nested” under Z-System. If EASE was running when ZFILER was
invoked, then EASE will become inactive while ZFILER is running but
will return automatically upon exit from ZFILER.

You will see a full-screen display of the names of the files in the current
directory and a pointer pointing to the first file. Use the WordStar-
diamond control keys to move the pointer around (control keys E, X,
S, and D to move up, down, left, and right, respectively). Position the
pointer to a text file, such as EASE.CMD, ALIAS.CMD, or ZFILER.CMD.
Press the “V” key to “View” the file. ZFILER has many such built-in
functions, and you can see a listing of them by pressing the slash (“/”)
key for help. Press slash again to return to the file display.

4.2. AUTOMATIC COMMANDS 31

Try tagging some files using the “T” key. Now experiment with a
“Group” operation by pressing the “G” key. As you can see, a number
of functions can be performed not only on single files but on all the
tagged files. Try selecting “Copy” by pressing “C”. When prompted for
the destination directory, enter

A1<cr>

Note that the colon after directories is optional inside ZFILER.

Let’s verify that the files were copied. Log into the A1: directory using
the “L” or “Log” key. Answer the prompt with

A1<cr>

Delete these duplicate files using the “D” key. Now let’s return to
directory A0:, but in a slightly different way. Directory A0: has the
name COMMANDS. Press the “L” key and answer the prompt with

COMMANDS<cr>

As you see, named directories can be used just as well as drive-user
designations. This is true throughout the Z-System.5

The built-in functions are not the only ones ZFILER can perform. A set
of “macro” commands can be defined, along with a user information
screen, in the file ZFILER.CMD. We have supplied a very simple one to
illustrate what can be done. Move the file pointer to the file NZCOM.LBR.
Now press the escape key. You will be prompted for a macro. Later,
when you know the keys associated with the macro functions, you can
enter the appropriate key immediately. Alternatively, you can press
escape again (do that now), and the information screen will appear.
You will see that the “L” macro will give you a directory of a library
file. Press “L” now and watch what happens.

ZFILER generated a command line for you and passed it on to the com-
mand processor. After that command line had completed execution,
the ZFILER shell was reinvoked automatically. In this case, it knew that
it had just finished executing a command that put some information
on the screen, so it waited for you to press any key before it restored
the display of file names.

5That is, for the ZCPR34 command processor and for the Z-System-specific utility
programs.

32 CHAPTER 4. LEARNING MORE ABOUT Z-SYSTEM

It is even possible to run macro commands on groups of tagged files.
Tag a few files and then press “G” to start a group operaton. When
asked for the operation, press the escape key to invoke macro process-
ing. As before, you will be prompted for the macro key. You can
again enter the key immediately or press escape to see the information
screen. Press “E”. ZFILER will now automatically generate a file called
ZFILER.ZEX in directory A0: and then initiate a ZEX batch operation.
The “E” macro, as you will see, is a harmless command line using ECHO
to show how ZFILER can parse the name of the designated file (pointed
to or tagged).

You can now exit from ZFILER by pressing the “X” or “eXit” key.
That will terminate the shell. If EASE was running before you in-
voked ZFILER, then EASE will return. Otherwise, you will again see
the prompt from the command processor itself.

Other Shells

There are quite a few other shells not provided with the standard
NZ-COM package that offer a wide variety of functions. Some are in
the same family as ZFILER. In contrast to ZFILER, which shows the
files on the screen and displays the available macro commands only on
request, the MENU shell shows only the command options. It supports
multiple levels of nested command menus. The VMENU and FMANAGER
shells are half way between MENU and ZFILER. They show the files in
the upper half of the screen and the command options in lower half.

A different kind of shell is the patching shell ZPATCH. It enables you to
edit the binary image of a file. For example, you might be customizing
the configuration options of a program. From within ZPATCH you can
execute the modified program to see the results of your handiwork and
then return automatically to ZPATCH, positioned to the exact byte you
were at when you left.

Another set of shells (SH, GETVAR, FOR-NEXT) allow one to create and
use “shell variables”, much like the “environment variables” in MS-DOS.

4.3 Other Z-System Tools

There are many, many other Z-System tools, far too many to begin
to describe them all here. In fact there is probably no Z-System user,

4.3. OTHER Z-SYSTEM TOOLS 33

no matter how expert, who knows them all! To get you started, we
will describe a few particularly important ones. We did not have you
copy all of them from the NZ-COM working disk (p. 8) into your A0:
directory. You can either copy them now or run them from the work
disk.

4.3.1 ARUNZ

A Z-System alias or alias script is a sequence of one or more commands
that can be invoked by a single name. As we saw in Section 3.1 (p. 13),
stand-alone aliases are short COM files that can be created by SALIAS,
the screen oriented alias editor.

ARUNZ provides an alternative way to define and use aliases. Instead
of making each alias its own file, ARUNZ allows one to define numerous
aliases in a single file called ALIAS.CMD. The ARUNZ program extracts a
designated alias script from the ALIAS.CMD file, expands any symbolic
parameters in the script, and passes the resulting command line to the
command processor.

The ALIAS.CMD file is an ordinary text file that is created with any text
editor or wordprocessor (in non-document mode). Since all the scripts
are combined in a single file, they require very little disk space. As a
result, you can easily have dozens or even hundreds of them, and they
can greatly enhance and ease your computing life.

ARUNZ aliases are invoked by a command of the form:

ARUNZ ALIASNAME COMMAND-ARGUMENTS<cr>

ALIASNAME specifies which of the scripts in ALIAS.CMD to use, and
COMMAND-ARGUMENTS supplies other information needed by the scripts,
such as file names. The real power of ARUNZ comes when it is renamed
to CMDRUN.COM and serves as the extended command processor (see
p. 26). Then the command can be issued simply as:

ALIASNAME COMMAND-ARGUMENTS<cr>

An example might make this clearer. One line in the ALIAS.CMD file
reads:

D=SD sdz $td1$tu1:$tn1*.$tt1* $-1

34 CHAPTER 4. LEARNING MORE ABOUT Z-SYSTEM

This may look rather forbidding with all those dollar signs, but, when
we take it apart piece by piece, it won’t be so bad. First of all, the
name of the alias is either “D” or “SD”. ARUNZ allows multiple names
to be assigned to a single script. The program run by this alias is SDZ,
the super-directory program.

The interesting part of this script is the way the command arguments
are handled. To illustrate what happens, let’s assume that we entered
the following command:

D S.C<cr>

The parameter expression “$td1” means the drive specified in the first
token. In our example, the first token is “S.C”. Since we did not specify
a drive in that token, the current drive, A, is assumed. Similarly,
“$tu1” means the user number specified in the first token. Again,
none was given, so the current user number, 0, is assumed. Next we
have a colon. So far the command line reads: “SDZ A0:”.

The next parameter, “$tn1” indicates the file name part of the first
token. In our example, this is “S”. The next characters in the script
are an asterisk and then a period. Then we have the parameter “$tt1”,
which stands for the file type in the first token, or “C”. Then we have
another asterisk in the script. So far the command line reads: “SDZ
A0:S*.C*”.

The final part of the script is the parameter expression “$-1”. This
means the entire command argument less the first token (“$-2” would
omit the first two tokens). In the example, there are no other tokens,
but one might have used an option to SDZ such as “/C” to get the
file size as a record count instead of in kilobytes. Thus the command
entered as

D S.C<cr>

has become, courtesy of ARUNZ,

SDZ A0:S*.C* <cr>

Try entering the alias command and see what happens. The script gives
us a very convenient way of automatically making the file specification
to the SDZ program into a wildcard specification, saving us the nuisance
of having to type all the asterisks. In the example, we get all files

4.3. OTHER Z-SYSTEM TOOLS 35

whose name starts with “S” and whose type starts with “C”, including
SALIAS.COM, STARTZCM.COM, and SDZ.COM.

To learn more about how to write and use ARUNZ aliases, consult the
references in the Bibliography. But note that the version of ARUNZ
included with NZ-COM is more recent than the one described in the
reference there. Many new parameters have been added, and a few
old parameters have been changed. So read the update documentation
provided with the NZ-COM package.

4.3.2 HELP

Most of the Z-Tools will provide a terse reminder of their command
line syntax if you enter them with just a double slash, as in

NZCOM //<cr>

Much more complete on-line information can be obtained using the
Z-System HELP utility. It provides an organized method (tree struc-
tured) for searching special text files with a file type of HLP and dis-
playing the information in them. You run HELP as follows:

HELP<cr>
HELP filename<cr>

The first form uses a file with the name HELP.HLP; the second form
uses one with the name “filename.HLP”. For example, if you want
help with SALIAS and there is a help file for it, enter the command

HELP SALIAS<cr>

Help files for a number of other Z-System programs can be found on
the Z-Nodes. You can also write your own HLP files.

4.3.3 Library Tools

Z-System library tools allow you to put an entire set of files into a
single library file and then access the individual members of the library
as needed. This is effective for keeping short and related files organized
and for saving directory and file space on a disk. Programs like NZCOM

36 CHAPTER 4. LEARNING MORE ABOUT Z-SYSTEM

and JetLDR are able to access multiple members of a library more
rapidly than individual files could be read. Libraries are also widely
used on remote access CP/M systems (RASs or RCPMs). The essential
NZ-COM system files, for example, are all kept in NZCOM.LBR.

The two multi-purpose library tools are NULU (new library utility) and
VLU (visual library utility). These two programs can create a library,
insert and extract files, type files to the screen, and a host of other
functions. NULU is a generic CP/M program readily available from RASs;
VLU is a Z-System-specific tool and works somewhat like the ZFILER
shell. We have included it with the NZ-COM package.

Library tools that perform more limited functions are:

LPUT put files into a library
LGET get files out of a library
LDIR display the directory of a library
LX extract and execute a member
LT display a member (library type)

4.3.4 File Compression

Text compression and decompression tools allow files to be “crunched”
to a fraction of their original size for more compact storage and faster
transmission by modem. Crunched files have a “Z” as the second letter
of their file type (or a file type of ZZZ if the original file had no file type
at all). CRUNCH and UNCR do the job. We have provided them with the
NZ-COM package.

LT.COM is quite versatile. It was listed with the library tools because it
can display text in library member file. It can also display individual
files, and in both cases the file can be crunched as well as normal text.
It even figures out automatically whether uncrunching is needed. To
type a library member to the screen, use the following command form:

LT LBRNAME FILENAME.TYP<cr>

To display an individual file, use the form:

LT FILENAME.TYP<cr>

4.3. OTHER Z-SYSTEM TOOLS 37

4.3.5 Named Directory Tools

The ability of Z-System to associate names with directories can make
life easier, especially when the computer has a hard disk. EDITNDR6 is
a tool for editing the assignment of directory names. It can be used
in either interactive mode or from the command line. Let’s use it
interactively first. Enter the command

EDITNDR<cr>

You will get a prompt inviting you to enter “?” for help. Why not
accept the invitation! Now try entering a carriage return. EDITNDR will
now show you the names that are currently assigned. Now enter the
line

A1:TEXT<cr>

This will assign the name TEXT to user area 1 on drive A. Press <cr> to
see the new listing. You may not notice the assignment for A1: because
it is not with the other assignments for drive A. Enter the command “S”
to sort the listing and then another <cr>. Now the names are in order.
If you look at the built-in help screen, you will see that EDITNDR is very
flexible in the syntax it will accept. When you are done experimenting,
enter “X” to exit from EDITNDR.

The ALIAS.CMD file contains an alias to facilitate assigning names to
directories. You just enter the command

NAME DU:DIRNAME<cr>

where DU is the drive/user to be given the name DIRNAME. If “DU:” is
omitted, the current directory will be given the name. Try entering

NAME SYS<cr>

and see how the command prompt changes. You can look at the con-
tents of ALIAS.CMD to see how this alias works.

The named directory assignments made by EDITNDR are temporary.
You can use the SAVENDR utility to write the assignments out to a file.

6This was originally released as EDITND. We have changed its name to make it
consistent with SAVENDR.

38 CHAPTER 4. LEARNING MORE ABOUT Z-SYSTEM

The file can be loaded by the STARTZCM alias to reinstall your names.
For example, the command

SAVENDR SYS<cr>

will create a file called SYS.NDR in the current directory. This file can
be loaded by NZCOM using the command

NZCOM SYS.NDR<cr>

NZCOM can load many files at once, so you can combine this with the
loading of the Z3T file as follows:

NZCOM myterm.Z3T SYS.NDR<cr>

If you put those two files inside NZCOM.LBR using LPUT, you can then
load them even faster using

NZCOM NZCOM myterm.Z3T SYS.NDR<cr>

For the ultimate, you can rename the two files to NZCOM.Z3T and
NZCOM.NDR before putting them into NZCOM.LBR. Then NZCOM will load
them automatically when it starts, and you will not have to include
any command in the STARTZCM alias to do it.

4.3.6 Other Tools

A number of other utility programs may be included with your NZ-COM
distribution diskette. You should experiment with them on your own.
Enter the command with “//” after it to see any built-in help informa-
tion. If there is a help (HLP) file with the same name as the command,
you can use HELP to learn more about the command.

4.4 Command Hierarchy

The ZCPR34 command processor is highly sophisticated in the way it
processes commands. Two steps are involved in command processing.
First, a command must be acquired from some source of commands.
Then, that command has to be processed in an appropriate way. We
will now describe briefly these two aspects of command processing.

4.4. COMMAND HIERARCHY 39

4.4.1 Command Acquisition

The ZPR34 command processor acquires its next command according
to the following hierarchy:

1. the multiple command line buffer

2. a ZEX batch command

3. a SUBMIT file

4. a shell command

5. user input

Commands in the multiple command line buffer have the highest pri-
ority. If the memory-based batch processor ZEX is active, its command
stream is treated as an extended multiple command line. Once the
command line buffer and any ZEX stream are exhausted, the command
processor will check to see if a SUBMIT job is running, in which case it
will read its next command line from the SUBMIT file. This means that
a SUBMIT command sequence acts, in effect, like a further extension of
the multiple command line. When all of these sources of commands
have been exhausted, the command processor will return to any shell
that has been engaged. Only if there is no shell will the command
processor turn, as a last resort, to the user!

4.4.2 Command Resolution

Once ZCPR34 has the next command, it resolves the command according
to the following hierarchy:

1. scan the FCP commands

2. scan the RCP commands

3. scan the command processor’s build-in commands

4. search for a COM file along the search path

5. invoke the extended command processor

6. invoke the error handler

40 CHAPTER 4. LEARNING MORE ABOUT Z-SYSTEM

Several factors can modify the resolution hierarchy. If the current flow
state is false, only FCP and shell commands are scanned. RCP and CPR
resident commands are ignored; transient commands and the extended
command processor (ECP) are ignored. Shells will still run.

Several prefixes can modify the resolution hieracrchy. A slash or space
prefix directs the command immediately to the extended command
processor. When you know that your command is one that must be
processed by the ECP, then you can save the time otherwise required
to search the path for a transient command. The slash or space prefix
can also be used when there are both transient and ECP versions of the
same command, and you want the ECP version.

A prefix of just a colon or a period will tell the ZCPR34 command
processor to skip resident commands.7 It also adds the currently logged
directory to the command search path for this command. If a transient
command is not found, the ECP will still be invoked. These prefixes can
be used when the path does not include the current directory ($$) and
you know that the command is there. It can also be used to force the
execution of a transient program with the same name as a command
resident in the RCP or CPR.

An explicit directory prefix of the form D:, U:, DU:, or DIR: has the
same effect as the colon or dot prefix except that the command is
searched for only in the specified directory and the ECP is not invoked
if the command is not found there.

If an error occurs, the command processor first attempts to invoke an
error handler. If none has been installed or if the one installed cannot
be found, it prints the entire remaining command line in the multiple
command line buffer followed by a “?”.

7This does not apply to resident commands in the FCP. Flow control commands
are checked for with every command, no matter what prefix might be present (a
colon, a slash, DU:, DIR:, etc.).

Chapter 5

Getting More Out of
NZ-COM

In the previous chapters, you learned about the basic operation of the
Z-System and of NZ-COM. What you have seen, however, is only the tip
of an iceberg! NZ-COM offers a vast array of possibilities, and we will
try to introduce them to you in this chapter. In fact, there are surely
ways to use NZ-COM that even we have not thought of, so we certainly
cannot claim to be offering an exhaustive treatment here.

5.1 Alternative Invocation Commands

So far, you have learned the simplest way to get the NZ-COM system
running using the command

NZCOM<cr>

NZ-COM can also be loaded in the following ways:

• from a SUBMIT script

• with a special multiple command line

NZCOM command lines can be included in SUBMIT files that will be run
from either CP/M or Z-System. Including the NZCOM command in a SUB

41

42 CHAPTER 5. GETTING MORE OUT OF NZ-COM

file that is invoked as part of a CP/M cold-boot procedure can be useful
for automatically loading NZ-COM whenever you turn your computer on.
See page 55 for information on more elaborate ways to use SUBMIT with
NZ-COM.

NZ-COM can also be started in a way that allows you to pass a Z-System
multiple command line to it. This is done by including the command
line at the end of the NZCOM command after a semicolon, as in the
following example:

NZCOM nzcom-tail;command 1;command 2;...<cr>

where “nzcom-tail” represents any file names and options for the
NZCOM command itself. This will start by performing the NZ-COM system
load corresponding to the command

NZCOM nzcom-tail<cr>

However, the command line following the “;” will be executed instead
of the usual STARTZCM command. For example,

NZCOM ;MYSTART<cr>

will load the standard NZ-COM configuration and then run the alterna-
tive startup command MYSTART.

The multiple-command-line loading technique and the SUBMIT loading
technique can be combined.

5.2 Customizing Your NZ-COM System

There are many ways to customize your NZ-COM system and adapt it
to your needs and tastes. We will consider two kinds of changes, those
that you make more-or-less temporarily by using utility programs and
those that you make more-or-less permanently by creating entirely new
system configurations.

5.2.1 Temporary Changes

After you become more familiar with the basic NZ-COM system, you
will undoubtedly want to change a number of system characteristics.

5.2. CUSTOMIZING YOUR NZ-COM SYSTEM 43

Some of these changes will be temporary ones. For example, you might
change the command search path to include a directory with files that
you do not use all the time — and thus do not usually include in the
path — but which you need for the current task. For this you would use
the PATH utility. When the task is finished, you would use the utility
again to restore the path to its usual configuration.

Other parameters that are often changed temporarily are the charac-
teristics of the printer or CRT screen. Many Z-System programs will
adjust automatically to these “environment” values. For example, if
you are printing with a spacing of 6 lines per inch, you might set the
printer data to 66 lines per page with 58 lines of text. When printing
with a spacing of 8 lines per inch, you would use values of 88 and 78
instead. The CPSET utility is used to specify these characteristics.

Sometimes you will want such changes to be in effect for an extended
period of time, but perhaps not permanently. One example of this
would be if you want to use a path that is different from the one cre-
ated by NZCOM (see p. 69). You would then include a PATH command
in your startup alias along with any other configuration commands.
These changes will then take place automatically when you first load
the NZ-COM system.

5.2.2 NZ-COM Descriptor Files

Although, as we just described, you can easily make temporary changes
in some of the system characteristics, there will probably come a time
when you will want to make some of those changes permanent. It is also
likely that you will at some point want to change system characteristics
that cannot be changed using utility programs, such as the sizes of the
system buffers (RCP, FCP, and so on). For example, if you have a hard
disk, the standard NDR with its capacity of only 21 names will not be
large enough, and you will want to increase the capacity to 28, 42, or
even more names. We are happy to report that these changes can be
made very easily.

The characteristics of NZ-COM systems are defined by “descriptor” files
in two alternative formats, one with a file type of ZCM and the other
with a file type of ENV. Files of both types are created by the MKZCM
utility (see p. 47). You can then work with whichever format you prefer;
the other file can be erased if you wish.

The ZCM files are ordinary text files in the form of a symbol table that

44 CHAPTER 5. GETTING MORE OUT OF NZ-COM

can be edited quite easily using any text editor or wordprocessor (in
non-document mode). At this point we recommend that you examine
the default descriptor file by entering the command

TYPE NZCOM.ZCM<cr>

The ENV files are binary files in the form of Z-System “environment
descriptors”. You can examine the default ENV descriptor by entering
the ARUNZ alias command

LOOK NZCOM.ENV<cr>

The screen display will not mean much to you unless you are already
familiar with Z-System programming internals. The only advantage of
the ENV form is that the file is only one record long, whereas the ZCM
file is five records long. There are a very few instances where an ENV
file is needed to configure some other Z-System program. In general,
we recommend working with the ZCM file.

5.2.3 Modifying the Descriptor Files

The MKZCM system definition utility can only make changes in the mem-
ory allocation map; many other characteristics can be changed only by
editing the system descriptor file. Some of those changes should be
made to make the system descriptor consistent with the characteris-
tics of your hardware. It is a good idea to make those changes in the
NZCOM.ZCM file at the outset. By doing so, you will generally not have
to make any further changes except by using MKZCM.1

Some characteristics that you will almost surely want to modify so that
they match your hardware are discussed below.

Drives and User Numbers

The drive vector (DRVEC) is a 16-bit word that tells the system which
logical disk drives to recognize. The lowest order bit corresponds to
drive A. Thus if you had floppy drives A and B, hard drive partitions
F, G, H, and I, and RAM drive M, the drive vector in binary would be
constructed as follows:
1This is because MKZCM always reads the values from the currently running system

(if Z-System is running) and incorporates those values into new ZCM and ENV files.

5.2. CUSTOMIZING YOUR NZ-COM SYSTEM 45

Drive: PONM LKJI HGFE DCBA

Bit: 0001 0000 1111 0011

In hexadecimal notation, as required for the ZCM file, this would be
10F3 for this example. The default value generated when MKZCM is run
from CP/M is FFFF (all 16 CP/M drives allowed).

There is a second symbol that defines the highest logical drive to be
recognized by the Z-System. MAXDRV is the number of the highest drive
on the system, starting with A=1. In the above example, this symbol
would be given the value 13 in decimal or 000D in hex. The default
value generated when MKZCM is run from CP/M is 0010 (16 decimal, all
drives recognized).2

The symbol MAXUSR specifies the highest user number to recognize un-
der Z-System. Although only user numbers from 0 to 15 can be logged
into, CP/M-2.2 actually assigns files to user numbers up to 31 in the
disk directory. Thus, the default value generated when MKZCM is run
from CP/M is 001F (31 decimal), and there is seldom reason to change
this value.

Printer and CRT Characteristics

The Z-System environment defines several physical characteristics of
the printer and CRT devices. Before ZCPR34, the environment stored
two CRT definitions and four printer definitions. The active definitions
were selected by the values of the symbols CRT and PRT. Now there
is only one definition for each device (hence the symbols CRT and PRT
should not be changed from their default values of 0000), but the utility
CPSET can be used to create any number of definitions.

The default device characteristics can be set by the following symbols:

• For the CRT, COLS for the width of the screen (default 80 deci-
mal, 0050 hex), ROWS for the total number of lines on the screen
(default 24 decimal, 0018 hex), and LINS for the number of lines
to use for text display (default 22 decimal, 0016 hex)

2Most utilities do not know about the drive vector and use MAXDRV to determine
the drives to access. Also, there are situations in which one wants to make a
distinction between drives that are allowed for named-directory references (the drive
vector) and the highest drive that a user can access using the drive/user (DU:) form
of reference (MAXDRV).

46 CHAPTER 5. GETTING MORE OUT OF NZ-COM

• For the printer, PCOL for the number of print columns (default 80
decimal, 0050 hex), PROW for the total number of lines on the page
(default 66 decimal, 0042 hex), PLIN for the number of lines to
use for printed text exclusive of margins (default 58 decimal, 003A
hex), and FORM to indicate the ability of the printer to respond
to a formfeed character by advancing to the next page (0001 if
so [default] or 0000 if not)

System Operational Characteristics

Some Z-System software timing loops are based on the value of the
symbol SPEED. Set it to the clock speed of the CPU in your computer
to the nearest megahertz. If your machine runs at 2.5 MHz, you’ll just
have to decide whether you like to play things down (use 0002) or to
exaggerate (use 0003); the definition of this symbol allows no way to
be honest! MKZCM’s default value is 0004.

A number of Z-System utilities display less or no screen information if
the system “quiet flag” is set. The state of this flag when the system
is loaded is determined by the symbol QUIET. Set it to 0000 for normal
operation or 0001 for quiet operation.

Z-System utilities and the command processor can allow or reject di-
rectory specifications of the form DU:. If the symbol DUOK is set to 0001
(the default), then directories can be specified in drive/user format. If
the value is 0000, then only named directories will be accepted. The
latter choice is rarely used and is not recommended.

Public Directory Specification

You can specify the initial configuration of ZRDOS public directories
using the symbols PUBDRV and PUBUSR. The eight low-order bits of each
word are used. For PUBDRV the least significant bit (bit 0) represents
drive A and the highest (bit 7), drive H. Set the bits for any drives that
you want to be public when the system is loaded. For PUBUSR the least
significant bit (bit 0) represents user number 1 and the highest (bit 7),
user 8. Set the bits for any user areas you want to be public when the
system is loaded. The default values are 0000 for both symbols so that
no directories are public initially.

5.2. CUSTOMIZING YOUR NZ-COM SYSTEM 47

5.2.4 Creating New Definitions with MKZCM

The MKZCM utility provides a convenient way to make changes in the
memory map of the system and to create entirely new system descrip-
tors. It allows you to change the sizes of the major system modules,
including a special “user” memory buffer that sets aside memory that
can be handy for “above-BIOS” system extensions like DateStamper or
RAM- or hard-disk drivers.

You can enter the command

MKZCM //<cr>

as usual to get a help screen explaining the function and syntax of
MKZCM. From the help screen you can either exit back to the operating
system or enter the program. You can also use either of the following
two forms to enter the program directly:

MKZCM<cr>
MKZCM name<cr>

In the second form, “name” is the name that will be assigned to the
ZCM and ENV descriptor files for the newly defined system. In the first
form, you will be prompted for a name from inside the program if one
is needed.

When MKZCM runs, it presents a menu display that covers most of the
screen and a command prompt at the bottom. You can respond in a
number of ways. You can enter any of the numbers (or the letter “U”)
that appear at the left side of the screen to select the system module
whose size you want to change. In that case, you will be prompted to
enter a new value for the size of the module in units of records (128
decimal or 80 hex bytes).3

The range of values that will be accepted and the value that will be
provided when a carriage return only is entered depend on the mod-
ule being defined. For many of the modules, a simple carriage return
selects a value of zero. Because of a constraint that the BIOS start on
a page boundary (an even multiple of 100 hex), MKZCM will sometimes
automatically assign an extra record to a module. You may find it
most convenient, because of this automatic adjustment, to start at the
bottom of the menu and work upward.

3The definition of the shell stack is an exception. Simply respond to the prompts.

48 CHAPTER 5. GETTING MORE OUT OF NZ-COM

Although MKZCM will allow you to specify CPR and DOS sizes that do
not comform to CP/M standards, we recommend that average users not
make any changes to the sizes of modules 1 through 3. Advanced users
may find interesting and useful applications for systems with larger (or
smaller) than standard command processors or disk operating systems.

The intent in the design of NZ-COM is that users will define several
different systems and load the one that best suits the current tasks to
be performed. The next section of the manual discusses how one can
change from one system to another at any time. Before we come to
that subject, we would like to suggest some configurations that you
might want to consider.

First let’s talk about the “User’s memory area”. As an example, we
will describe how you would use this buffer to run DateStamper.4 The
version of DateStamper that runs with a generic DOS requires 10 records
of memory. It can automatically configure and load itself underneath
the command processor, but this locks the command processor in place
and effectively takes away an additional 2K of memory. It is much more
efficient to load DateStamper above the BIOS.

Locating it above the real BIOS requires moving the BIOS down to
make room for DateStamper. Users may not have the skill to carry
this out, and it also means that the memory assigned to DateStamper
can never be recovered for use by programs. With NZ-COM you can
have one system definition that includes a buffer for DateStamper and
another definition that does not.

You should run MKZCM now and follow through the examples. Note
the addresses of the various system modules. Now define a buffer for
DateStamper by pressing “U” at the command prompt from MKZCM and
then entering

10<cr>

Note how the addresses for the system modules change automatically
to accommodate the buffer. At this point you would note the starting
address of the user buffer. Then you would carry out the procedure for
creating a special “above-BIOS” version of DateStamper.5 You would
then load DateStamper in the usual way. You should note, however,
that every time you load a new NZ-COM system, the DOS and BIOS

4This is an operating system extension for CP/M-2.2 that maintains time/date
stamps indicating when files were created, last accessed, and last modified.
5Consult the DateStamper manual for instructions on how to do this.

5.3. LOADING NEW SYSTEMS 49

are reloaded. The hooks into DateStamper are thereby lost, and you
must reload DateStamper. This can be done automatically by changing
systems using alias scripts (look at the sample aliases in ALIAS.CMD).6

Some common choices for the other components of the system might
be as follows.

One will probably want to define systems both with and without an
IOP. If one usually uses an IOP, such as the excellent NuKey keyboard
macro IOP, then the default system would include an IOP buffer, and
the definition that omits it could be called something like NOIOP. If one
does not use an IOP most of the time, then the definition with no IOP
buffer would be given the default name of NZCOM (ZCM and ENV), and
the version with the IOP could be called WITHIOP.

There will be times when one is really cramped for program memory.
For these occasions, one might want a system, perhaps with the name
SMALL, that drops both the IOP and the RCP, the two largest auxilliary
modules. If the memory crunch gets even more severe, a system perhaps
called MIN might omit even the FCP and/or NDR.

As you gain experience using NZ-COM, you will develop a sense of the
system definitions that best suit your needs. And as your needs change,
you can easily go back and redefine existing systems or create still
additional systems. You can even create a temporary definition on the
spot and load it in less than a minute!

5.3 Loading New Systems

So far we have been discussing how new systems are defined; we have
not described how systems other than the default system with the name
NZCOM are loaded. Recall that the default system is loaded with the
command

NZCOM<cr>

This command uses the system descriptor NZCOM.ZCM (only the ZCM
version). It loads the code and other modules it needs either from the
library NZCOM.LBR or from individual files located along the path.

The command processor (CPR), the DOS, and the NZ-COM special
BIOS are loaded using the default files NZCPR.ZRL, NZDOS.ZRL, and

6See p. 71 for another possibility.

50 CHAPTER 5. GETTING MORE OUT OF NZ-COM

NZBIO.ZRL, respectively. In addition, if the corresponding modules
are included in the system definition, the RCP (NZRCP.ZRL), FCP
(NZFCP.ZRL), and IOP (NZIOP.ZRL) are loaded. The latter is just a
dummy IOP that provides the basic character input and output func-
tions. If named directories are supported, a file called NZCOM.NDR will
be loaded, and, if present, the terminal descriptor file NZCOM.Z3T will
also be loaded.

Systems other than the default definition can be loaded in a great many
ways. First we will describe a shorthand method that is easy to use
and generally does what you want. This method uses the command
line:

NZCOM name<cr>

where “name” is the name of a ZCM or ENV file that you created using
MKZCM.7 The system descriptor file of that name will be used to define
the system. Modules will be loaded exactly as described above.

The shorthand command cannot be used to load systems that define
smaller, but non-zero-size, modules. For example, if you try to define
a system with a small RCP (e.g., 10 records), then when NZCOM tries to
load NZRCP.ZRL, an error will occur because the RCP created from that
file cannot fit into the buffer allocated for the RCP. Thus the shorthand
method should be used only to load systems from which buffers have
been omitted entirely or made at least as large as the defaults.

The most general form of the NZCOM loading command allows enormous
flexibility, much more than most users will ever need. See page 63 for
a full description. Here we will simply note the command form that
should be used to load a system that you want to use a module other
than one of the defaults. The form of the command is

NZCOM name module(s)<cr>

where “name” is, as before, the name of the descriptor file and where
one or more system modules can be named explicitly. For example,

NZCOM SMALL SMALLRCP.ZRL<cr>

would load a system described by SMALL.ZCM (or SMALL.ENV) and would
use SMALLRCP.ZRL instead of NZRCP.ZRL for the RCP module.
7Or a ZCI file created by NZCOM as described in the next section.

5.4. THE SYSTEM CLONING OPTION 51

5.4 The System Cloning Option

There is an additional method of loading NZ-COM systems that offers the
advantage of greater loading speed at the expense of requiring larger
files on the disk. NZCOM has a “clone” option that allows it to go
through the normal system generation procedure (as if run from the
CP/M prompt) but to write the resulting binary image of the system
to a file instead of loading it into memory. The result is a file whose
name is the name of the ZCM or ENV file (or NZCOM if none was specified
explicitly) used to define the system and whose type is ZCI (for Z-Com
Image). For example, the command

NZCOM /C<cr>

creates NZCOM.ZCI with the default system image. The command

NZCOM SMALL SMALLRCP.ZRL /C<cr>

creates SMALL.ZCI with the image of the small system, including its
special RCP module.

Systems defined by ZCI files are loaded in the same way as those de-
scribed by ZCM and ENV descriptors by including their name on the
NZCOM command line. For example,

NZCOM SMALL.ZCI<cr>

will load the small system in a single operation, without having to lo-
cate and load all the individual files that were used when SMALL.ZCI
was created. This permits the system to be loaded in much less time.
It also means that modules required to create the system, such as
SMALLRCP.ZRL, do not have to be kept on the disk.

When the shorthand form of the NZCOM loading command is used, as in

NZCOM SMALL<cr>

the file type assumed for SMALL is first ZCI, then ZCM, and finally ENV.
The basic loading command

NZCOM<cr>

52 CHAPTER 5. GETTING MORE OUT OF NZ-COM

however, is a special case and is equivalent to

NZCOM NZCOM.ZCM<cr>

If you want to load NZCOM.ZCI, you should use one of the following
command forms:

NZCOM NZCOM.ZCI<cr>

NZCOM NZCOM.LBR NZCOM<cr>

The first form will load only a ZCI file; the second form simply forces
NZCOM to use its normal hierarchy of ZCI, then ZCM, and finally ENV.

5.5 Changing Systems on the Fly

The previous discussion may have given you the impression that you
are expected to load a particular NZ-COM system and then to stick with
it for the duration of the session. This is not at all the case. Quite the
contrary, one of the principal design features of NZ-COM is its ability to
load new versions of the operating system at any time, even right in
the middle of a multiple command sequence.

5.5.1 Loading Rules

When NZCOM is loaded from the CP/M command prompt (a “cold” load),
all of the values specified in the descriptor file take effect and all sys-
tem modules are loaded as described earlier (p. 49). On the other
hand, when NZCOM is invoked from an already running NZ-COM system
(a “warm” load), only things that have to be changed are actually
changed.

First, all system information with the exception of the addresses and
sizes of the system modules is preserved whenever possible. Shells
and error handlers continue to run in the new system; the command
search path, values in the user registers, system file names, printer and
CRT characteristics, etc. do not change. The contents of the multiple
command line buffer are carried over to the new system. This means
that new configurations can be loaded as part of a complex sequence

5.5. CHANGING SYSTEMS ON THE FLY 53

of commands, even one that includes flow control operations.8 The
system doesn’t miss a beat!

Second, the contents of system modules (RCP, NDR, etc.) are not
changed unless the address of the module has changed or the size of the
module has decreased. Even naming a module explicitly on the NZCOM
command line will not force it to be loaded; it will be used only if a
change in the module address or size requires its loading.9

5.5.2 Why Change Systems

Why would you want to change systems on the fly like this? The usual
reason is memory. If there were infinite memory, you would load the
biggest, most powerful version of NZ-COM you could get and leave it
there all the time. In real life, especially on a CP/M system with its
address space of only 64K, trade-offs have to be made.

Most people most of the time will probably want to have a rather
powerful version of Z-System, one that includes all system facilities
with the possible exception of an IOP. There will be occasions, however,
when an application program will be run that needs more working
memory than this configuration allows. Then one will want to load a
smaller system. Conversely, if the standard system does not include an
IOP, then when one does want to use an IOP, one will load a bigger
system.

For example, suppose we have an application program called “BIGPROG”
that requires a lot of memory (perhaps it is a database manager). We
could then enter the command

NZCOM SMALL;BIGPROG ...;NZCOM<cr>

This command line will first install the small NZ-COM system with its
larger TPA. Then it will run BIGPROG. Finally, after BIGPROG has fin-
ished, the standard NZ-COM system will be reloaded. Apart from the
time penalty associated with changing systems, there is no disadvantage
to dropping Z-System features that are not needed by the application
program being run.10 In the above example, by the time the prompt

8Provided, of course, that no flow commands have to be processedwhile a system
with no FCP is active.
9You can force a module to be loaded by invoking the NZCOM program in its

module loading mode as described on page 63.
10Few application programs make use of Z-System features. WordStar Release 4

54 CHAPTER 5. GETTING MORE OUT OF NZ-COM

has returned asking the user for his next command, the powerful verson
of Z-System is back in place. As far as the user can tell, it was always
there.

5.5.3 Automating System Changes

The process of changing systems can be automated to various degrees
by taking advantage of Z-System capabilities. The system loading com-
mands described in Section 5.3 can all be made into aliases or included
in ALIAS.CMD. Then changing to a new system, such as SMALL, can be
made using the simple command line

SMALL<cr>

The automation can be extended to situations where particular pro-
grams require particular versions of the NZ-COM system. Suppose, for
example, that BIGPROG.COM is in directory BIGDIR: and that we re-
name it to BGPRG.COM. If we put the following script definition into our
ALIAS.CMD file

BIGPROG nzcom small;bigdir:bgprg $*;nzcom

then we can just enter our command as we used to:

BIGPROG FILENAME ...<cr>

The ARUNZ extended command processor will automatically handle the
system switching for us. Fancier scripts can even test to see if the TPA
is already large enough for a program and only change systems when
necessary. There is no limit to what ingenuity can accomplish with the
flexibility offered by NZ-COM!

There are two fine points that we should mention here. First, NZCOM is
smart enough not to perform any loading operation when it recognizes
that the requested system is no different from the existing system.
Second, if NZCOM encounters an error when attempting to load a new
system, it does not simply give up. It displays an error message on the
screen reporting the nature of the problem and then it invokes the error

is the exception among applications from major software houses; it can use named
directories. In this case you might want to create an NZ-COM system that includes
only an NDR buffer.

5.5. CHANGING SYSTEMS ON THE FLY 55

handler. In this way, you have a chance to correct any errors before
the command sequence plows ahead, possibly leading to a catastrophe
(or at least a great inconvenience).

5.5.4 Automatic Returns to CP/M

There may be some exceptional circumstances under which you will
need to run a program under normal CP/M. For example, you might need
every bit of TPAmemory that you can get your hands on. Or you might
have to run a configuration program for your computer that performs
direct BIOS modifications using addresses offset from the warm boot
vector. Since under NZ-COM the warm boot vector points to the NZ-COM
virtual BIOS, these utilities will not operate properly.

You can use the SUBMIT facility to run a batch job that exits from
Z-System entirely, runs an application under plain CP/M, and then re-
turns to Z-System! You do have to observe some precautions, however.
For example, you obviously have to make sure that all command lines in
the batch file that will execute while Z-System is not in effect are valid
CP/M commands. This means only one command on a line and no type-3
or type-4 programs. Once the batch script has reloaded Z-System, it
can resume using appropriate Z-System commands, including multiple
commands on a line.

Another factor to bear in mind is that NZCPM returns you to CP/M in
drive A user 0 no matter where you were when it was invoked. Since
ZCPR3 (starting with version 3.3) writes its SUBMIT file to directory
A0: rather than to the current directory, there is no problem with
continuing operation of the batch file under CP/M. However, when you
reload NZ-COM (it will be a cold load, including execution of STARTZCM),
you will not automatically be back in your original directory. You will
have to include an explicit command to get back.

You must also make sure that you use only versions of ZCPR34 that
support the standard type of SUBMIT operation. The “LONGSUB” form
of SUBMIT processing is incompatible with CP/M SUBMIT processing.

Here is a sequence of command lines that might be included in a file
called CONFIG.SUB to automate the running of a utility originally called
CONFIG.COM under CP/M.

A0:NZCPM

CONFIG0

56 CHAPTER 5. GETTING MORE OUT OF NZ-COM

NZCOM

$1:

The first command line removes NZ-COM from operation and returns
the system to CP/M in user area A0:. The next two command lines
run under CP/M. The first one runs the configuration utility, which we
have renamed to CONFIG0.COM for reasons that we will explain in a mo-
ment. The second CP/M command reloads the standard configuration
of NZ-COM. When that command is finished, Z-System is again run-
ning, but in directory A0:. The final line runs under Z-System and is
designed to log us back into the directory we were in when this whole
process was initiated.

The “$1” expression in the last command is a SUBMIT parameter. We
have assumed that this SUBMIT script will be invoked by an alias named
CONFIG in the ALIAS.CMD file. The alias script would have the form:

CONFIG sub config $hb

The ARUNZ parameter “$hb” returns the default directory at the time
the alias is invoked in the format “DU”. This is passed as a parameter
to the SUBMIT job.

Chapter 6

Technical Reference

6.1 Definition of File Types

The NZ-COM operating system identifies the functions of certain special
files by their file types. These are listed in Table 6.1 on page 58. ZRL
files are special relocatable files that can be adapted to any NZ-COM
system configuration. They may be in the formats supported by either
SLR Systems or Microsoft. The modules must be named as indicated in
Table 6.1 by including a line in the source code using the NAME pseudo-
op. There are no restrictions on the names used for the files themselves.
At load time, NZCOM determines the kind of module coded by the file
by examining the module name embedded in the code.

6.2 Files Supplied with NZ-COM

Many files are provided with the NZ-COM system. Most of them are
listed in this section along with explanations of their functions. See the
file RELEASE.NOT for information about any changes.

6.2.1 NZ-COM System Files

The files that comprise the NZ-COM product are listed in Table 6.2 on
page 59. We want to remind you that these files are copyrighted and

57

58 CHAPTER 6. TECHNICAL REFERENCE

FILE TYPE CONTENTS
LBR library file
ZCM NZ-COM system descriptor
ENV Z-System environment and NZ-COM system descriptor
ZCI NZ-COM system binary image
Z3T Z3 terminal capability descriptor (TCAP)
NDR named directory register file
ZRL named-common Z-system ReLocatable

file with a REL module name of:
CCPxxx NZ-COM command processor
DOSxxx NZ-COM disk operating system module
BIOxxx NZ-COM BIOS module
RCPxxx Resident Command Package
FCPxxx Flow Command Package
IOPxxx Input/Output Package

where “x” is any character

Table 6.1: Table of file types used with the NZ-COM system.

are licensed for a single user only. It is illegal to copy or distribute
these files to any other person. See the copyright notice page at the
beginning of the manual for details.

The alternative RCP is smaller than the standard RCP and offers a very
different set of commands, chosen with operating speed in mind. With
the exception of the R command, which requires almost no code in the
RCP, it includes only commands that operate entirely in memory and
without reference to disks. Here the speed improvement offered by a
resident command can be fully appreciated. Commands that operate
on the disks or on disk files, such as SP, TYPE, and ERA, are left to
transient commands.

The alternative FCP omits the IFQ command and thereby is one record
smaller. Once you have learned how to use Z-System flow control, you
may choose to use this smaller FCP. If so, you could rename NZFCP1.ZRL
to NZFCP.ZRL (and the standard NZFCP.ZRL to, perhaps, NZFCP2.ZRL)
so that it will load as the default. The same renaming can be done for
the RCP described above. You can rename the library members using
the NULU library utility. If you do not have NULU, you can extract all
the files from the library (LGET), rename the ones you want to change,
and rebuild the library (LPUT). If you are adept at patching files, you

6.2. FILES SUPPLIED WITH NZ-COM 59

NZCOM .COM NZCOM system loader
NZCOM .LBR library of NZCOM system modules
NZCPR .ZRL default command processor
NZDOS .ZRL default disk operating system
NZBIO .ZRL default virtual BIOS
NZRCP .ZRL default resident command package
NZRCP1 .ZRL alternative resident command package
NZFCP .ZRL default flow command package
NZFCP1 .ZRL alternative flow command package
NZCOM .NDR default named directory definition
MKZCM .COM NZ-COM system defining utility
ZCPR34 .LBR alternative command processor modules
JETLDR .COM Z-System package loader

Table 6.2: List of the NZ-COM system files.

could change the names directly in the LBR file that way as well.

6.2.2 Tools and Utilities

Many files that are not a part of the proprietary NZ-COM system are in-
cluded with the distribution package as a convenience to users.1 Some
of these files are public-domain. Others are copyrighted by their au-
thors or by ZSIG, the Z-System Interest Group. With all of them,
however, the authors have granted permission for them to be copied
and distributed free of charge to other users for non-commercial use.

The following files support the Z-System TCAP facility:

TCSELECT .COM select a terminal descriptor
Z3TCAP .TCP database of terminal descriptors

The following files support Z-System aliases:

SALIAS .COM standalone alias generator
ARUNZ .COM alias command processor
ALIAS .CMD alias script file for ARUNZ

1Therefore, we cannot take responsibility to support these programs.

60 CHAPTER 6. TECHNICAL REFERENCE

The following file is used by the FCP to process extended conditional
tests:

IF .COM extended flow condition tester

The following utilities define or display various Z-System environment
variables and system capabilities:

CPSET .COM displays/defines CRT/PRT characteristics
PATH .COM set/display command search path2

SHOW .COM display Z-System configuration information
EDITNDR .COM edit named directory register in memory3

SAVENDR .COM save named directory register to file

The following programs are utilities of general interest:

FF .COM file finder
CRUNCH .COM file compression tool
UNCR .COM file decompression tool

The following programs support library files:

LDIR .COM library directory program
LGET .COM library member extractor
LPUT .COM library file inserter
VLU .COM video-oriented library file utility
LX .COM library file executive

The following files are related to shells and error handlers:

ZF-REV .COM ZFILER shell for reverse-video terminals
ZF-DIM .COM ZFILER shell for dim-video terminals
ZFILER .CMD macro script file for ZFILER
EASE .COM command history shell and error handler
EASECMD .COM generates file with EASE command keys
VARPACK .COM compresses EASE history file

The following files support the Z-System help facility:

HELP .COM displays menu-driven help files

2name changed from the original SETPATH.COM
3name changed from the original EDITND.COM

6.3. NZCOM COMMAND LINES 61

xxx .HLP various help files

The following programs are type-4 transient programs (see p. 23) that
run at the very top of the available TPA and leave low memory undis-
turbed. They are especially useful in a “minimum” system, where
transient programs are used for functions otherwise performed by RCP
commands. You will want to rename them to omit the leading TY4.

TY4SP .COM disk space
TY4SAVE .COM save memory to file
TY4REN .COM rename file
TY4ERA .COM erase file

There are several ways to tap into the rich lode of ever-expanding Z-
System user-group files. The telephone numbers of the Z-Node remote
access systems are listed in:

ZNODES .LST

A number of individuals have volunteered to help others install and use
Z-System. Their names, addresses, and phone numbers are listed in
the file

ZHELPERS .LST

6.3 NZCOM Command Lines

This section describes the various forms of command line that can be
used with the NZCOM.COM program.

6.3.1 Help Screens

A built-in help screen designed to remind you of the syntax required
for NZCOM commands is displayed by typing either of the following com-
mands:

NZCOM //<cr>
NZCOM ?<cr>

62 CHAPTER 6. TECHNICAL REFERENCE

This screen will also indicate how the current version has been config-
ured by patching the file (see p. 68).

6.3.2 Loading NZ-COM Systems

The general form of the NZCOM command line is

NZCOM [library] [descriptor] [filelist]

[/options] [;commands]<cr>

All elements on the command line are optional. If multiple items are
present, they may be separated by spaces (as shown), commas, or com-
binations of the two. Different separators can be used on different parts
of the command line.

General Rules

Before describing the individual command-line items in detail, we want
to define two general rules. First, a prefix indicated as “dir:” in a
syntax expression represents any appropriate kind of directory speci-
fication. When NZCOM is invoked from CP/M, then the directory prefix
may have any of the following drive/user formats: colon only for cur-
rent directory, D:, U:, or DU:. If Z-System is already running, then
named directory references may also be used.

Second, files specified on the NZCOM command line are looked for ac-
cording to the following procedure. If the file has a specific directory
prefix, then only that directory is searched. If no explicit directory
prefix is present, then the currently selected library (more on that in
a moment) is searched first. If the file is not found in the library, then
the “path” is scanned. If Z-System is already running, then “path”
means the current Z-System path including the current directory. If
CP/M is running, then “path” means an internal path configured into
the NZCOM.COM program (see p. 68). You can see what this path is by
invoking the NZCOM help screen.

The Library Term

The first item on the command line is an optional library file specifica-
tion. It has the form

6.3. NZCOM COMMAND LINES 63

[dir:]lbrname.LBR

The file type LBR is required. If no library is named explicitly, then
a term of “NZCOM.LBR” is assumed for this command-line item. A
directory prefix is optional.

Libraries can also be specified, as we shall soon see, as items in the file
list. In all cases, NZCOM looks for library files just as it does for any
other file, except that, naturally, it does not look for it as a member of
any other library. The most recently named (or implied) library is the
one used in the search hierarchy for other files. A library named at the
beginning of the command tail applies to the search for any descriptor
file.

The Descriptor Term

The second item is an optional NZ-COM system descriptor file. It, too,
can optionally include a directory prefix. It is identified by having ei-
ther no file type at all or one of the three system descriptor file types
ZCI, ZCM, or ENV. If no file type is named explicitly, then the file search
procedure is applied sequentially to each of the three file types in the or-
der just listed. If a system descriptor does appear on the command line,
then NZCOM enters system-building mode. Otherwise, it enters module-
loading mode.

If no file list (see below) is present, then it is generally as if a term of
“NZCOM” were present as the system descriptor. An exception occurs
when there are no files at all named in the command tail. Then the
file-specification part of the command line is taken to be equivalent to

NZCOM NZCOM.LBR NZCOM.ZCM

where the ZCM file type is used instead of ZCI as required by the general
rule given above.

The File List Term

The third item is an optional list of one or more module or library files
having the form

filename [filename [...]]

64 CHAPTER 6. TECHNICAL REFERENCE

Each file name has the form

[dir:]name.typ

where the allowed file types are LBR, ZRL, REL, Z3T, NDR, FCP, RCP, or
IOP.

When a library file is named, it becomes the currently active library
and is used in the search for module files named subsequently.

The ZRL file is a special form of relocatable image that can be configured
for use in a Z-System when the file is to be used (as opposed to when
it was created). It is the only kind of file that can be used to load
command processor, disk operating system, or virtual BIOS modules.
The ZRL file is a very convenient way to supply other code modules,
such as FCP and RCP modules, since a single ZRL file can be used in any
Z-System that has memory allocated for it. We encourage developers
and users to give ZRL-type files the file extension ZRL. However, files of
the ZRL type with an extension of REL can be loaded.

NZCOM can load several forms of non-relocatable files as well. Z3T ter-
minal capability descriptor files and NDR named directory register files
never pose a problem, since these modules contain no code; they con-
tain only data. NZCOM can also load absolute binary images of FCP,
RCP, and IOP code modules. This is inherently a risky procedure in
a dynamic system like NZ-COM, where the addresses of system compo-
nents can change. For that reason, we strongly encourage the use of
ZRL files. NZCOM does make some effort to check these absolute modules
for compatibility with the NZ-COM system running or being built, but
there is no test that can guarantee compatibility.

NZCOM operates on the list of files in two different ways depending on
which mode it is in. If it is in module-loading mode, then any module
files named in the list are loaded directly into the currently running
operating system. If it is in system-building mode, then it builds the
image of a new operating system.

In system-building mode, if an NZ-COM system is already running, mod-
ules named in the list are loaded into the image only if the newly defined
NZ-COM system differs from the currently running NZ-COM system in a
way that requires loading of the new module, namely, if the address of
the buffer to which the module would be loaded has changed or if its
size has decreased. If any modules are needed that were not specified
in the list, then NZCOM uses its standard default module names, looking
for the files as if they were specified explicitly at the end of the file list.

6.3. NZCOM COMMAND LINES 65

These modules are as follows:

• NZCPR.ZRL for the command processor

• NZDOS.ZRL for the disk operating system

• NZBIO.ZRL for the NZ-COM virtual BIOS

• NZFCP.ZRL for the flow command package

• NZRCP.ZRL for the resident command package

• NZIOP.ZRL for the input/output package

• NZCOM.NDR for the named directory register

• NZCOM.Z3T for the terminal capabilities descriptor

If the “C” option flag is specified (see below), then NZCOM pays no
attention to whether Z-System is currently running. It acts as though
CP/M is running and loads all module files into the image.

The Options Term

The next item in the NZCOM command line is an optional slash character
followed by one or more flag characters.

Flags of “Q” or “V” select “quiet” or “verbose” mode. In verbose mode,
NZCOM displays information about the modules that are being loaded,
including the name of the file used and, where appropriate, the address
to which the result will be loaded. In quiet mode this display is sup-
pressed, and only a series of dots is displayed. This lets you know that
something is happening and that progress is being made. The NZCOM
help screen indicates the default mode for this flag. Quiet mode is the
default in the distributed version of NZCOM.COM but can be changed by
the user (see p. 68).

Another option flag is “C” (for “clone”). When this flag is specified,
NZCOM acts as though it was invoked from the CP/M command line and
builds a complete system. However, it does not load this system. In-
stead, it writes it out to a file whose name is that of the NZ-COM descrip-
tor file named on the command line (or the default NZCOM). Naturally,
this option can be used only in system-building mode.

A third option is one of the pair “Z” and “R”. These determine whether
NZCOM will recognize a file extension of ZRL or REL for ZRL-type files that

66 CHAPTER 6. TECHNICAL REFERENCE

it loads as default files (see the list of default files above) when it needs
a module that you have not specified explicitly. We recommend that
this option not be used and that you rename the files to an extension
of ZRL so that it is clear that they are files of the ZRL type.

The Command Line Term

The final optional item on the NZCOM command line is a semicolon
followed by Z-System-type multiple command line expression. Since a
semicolon terminates a command line under Z-System, this option has
no meaning if Z-System is already running.4 It is intended as a way to
allow the user to include an initial multiple command line when NZCOM
is invoked from CP/M.

6.3.3 Removing NZ-COM

When NZCOM is invoked from CP/M, it looks to see if a file with the
name NZCPM.COM already exists in the root directory of the internal
path configured into NZCOM.COM (see p. 68). If not, it captures an
image of the CP/M system and saves it in a file together with a loader
that can restore it. This file is called NZCPM.COM. The NZ-COM operating
system can be removed from the system and the CP/M operating system
restored at any time by issuing the command5

NZCPM<cr>

6.3.4 Examples and Tips

We will now present a few examples of NZCOM command lines to help
make clear how the syntax works. As we discuss these examples, we
will point out some tricks that can simplify or speed up the operation
of NZCOM.

4Whenever NZCOM loads a new version of Z-System, any pending commands in
the command line buffer of the running system are put into the command line buffer
of the new system. As a result, the option described here appears to work just the
same from a running Z-System.
5This assumes that NZCPM is in a directory along the search path. If not, you

have to include an explicit directory prefix with the command.

6.3. NZCOM COMMAND LINES 67

Loading a Special NZ-COM Configuration

The following command line could be used to load a special configura-
tion defined by SMALL.ENV. It is assumed that the definition and the
modules SMALLFCP.ZRL and SMALLRCP.ZRL that it uses are included in
the library SPECIAL.LBR which resides in directory A15:. Other than
those specific modules, all other modules are the default files kept as
usual in NZCOM.LBR in A0:. Here is the command line that loads this
system:

NZCOM A15:SPECIAL.LBR SMALL.ENV SMALLFCP.ZRL

SMALLRCP.ZRL A0:NZCOM.LBR /V<cr>

We have used explicit drive specifications for both libraries so that
NZCOM will not have to waste any time searching for them along the
path.

By including an explicit file type in the term SMALL.ENV we gain two
advantages. First we make sure that files with the names SMALL.ZCI
or SMALL.ZCM are not loaded (against our intentions here). Second, in
case the file is accidentally not in the library, we prevent NZCOM from
performing a rather lengthy search for files with all three descriptor
file types over the entire search route before the error is detected and
reported.

The inclusion of the term A0:NZCOM.LBR at the end of the file list is very
important. Without it, the current library at the end of the list would
have been A15:SMALL.LBR. The default files required for the remaining
modules would not have been found, since NZCOM would not have looked
automatically in NZCOM.LBR.

The option “/V” at the end makes sure that NZCOM displays a detailed
load map showing how the system was generated.

If one were going to load the system configuration defined by this com-
mand more than just one or two times, it would make sense to add this
command line to the ALIAS.CMD file under an alias name like SMALL.
This would save a lot of typing and prevent a lot of errors, such as for-
getting to include the NZCOM.LBR term or typing one of the file names
incorrectly.

68 CHAPTER 6. TECHNICAL REFERENCE

Loading Special Modules

The following command is used to load a new group of command mod-
ules. It assumes that we develop our RCPs in a directory with the name
RCP and that we keep the ones we have completed in a library called
RCPS.LBR. It assumes that we only have a few versions of FCP and that
we prefer to leave them as individual files in our main directory A0:.

NZCOM RCP:RCPS.LBR RCP-D.ZRL A0:FCP-1.ZRL<cr>

By including an explicit A0: in front of the FCP-1.ZRL term we gain
speed. NZCOM would normally look for the file first in RCPS.LBR and
only then search the path. By including the correct directory prefix,
we get NZCOM to locate the file immediately.

Loading a New Command Processor

Users of Z-System are accustomed to the idea of loading new RCP and
FCP modules. It may come as something of a surprise that NZCOM can
just as easily load a new command processor. The NZ-COM distribu-
tion package includes a library called ZCPR34.LBR that contains sev-
eral alternative command processor configurations. One of them sup-
ports a nonstandard form of SUBMIT processing that allows arbitrarily
long SUBMIT files.6 To use the special command processor file named
Z34LONG.ZRL we would use the command line

NZCOM A0:ZCPR34.LBR Z34LONG.ZRL<cr>

It would probably be useful in the long run to define an alias in
ALIAS.CMD under a name like LSUBCPR that would generate this com-
mand line for us.

6.4 Patching NZCOM.COM

There are several options in NZCOM.COM that are controlled by config-
uration bytes in the code. You can install changes in several ways.
The most convenient method uses a patching utility like ZPATCH. You

6Ordinary CP/M SUBMIT files may not contain more than 128 command lines, the
number that can be included in a single file “extent”.

6.4. PATCHING NZCOM.COM 69

can also use facilities already provided by Z-System. You can load
NZCOM into memory using the GET command, make the changes using
the POKE command, and then save the modified image using the SAVE
utility. Before you do this, however, you have to know how large the
file NZCOM.COM is in records. The SDZ directory program with the “/C”
option will give you this information.

We will now describe the current configuration areas in detail. This
information is correct for the initial release version of NZ-COM, and it
is quite possible that future versions will have additional or different
configuration options. You should always consult the file RELEASE.NOT,
if one is present, for more recent information.

6.4.1 The Internal Search Path

The “internal” search path, which is used when NZCOM operates under
CP/M, which becomes the initial Z-System path, and which determines
where the CCP image file NZCOM.CCP and the NZ-COM system unloader
NZCPM.COM are put, is stored at address 0680.7 Each element in the
path is expressed by a pair of bytes. The first byte of the pair is the
drive, with a value of 1 for drive A. The second byte of the pair is the
user number and must have a value in the range 00 to 1F (31 decimal).

There are two special symbols that can be used in a path element
expression. A dollar sign (24 hex) for a drive takes on the value of the
currently logged drive at the time the path expression is used. Similarly,
a dollar sign in the user position represents the currently logged user
area.

There can be at most five elements in the path. The path is terminated
by a single null byte (value 00). The end of the entire path sequence in
the NZCOM code is marked by a byte of FF. The path in the distributed
version of NZCOM.COM contains the sequence A0 $$ A0. The remaining
two possible path elements are filled with nulls.

You might wonder why directory A0 is included twice in the path. The
final drive/user pair in the path is called the root directory.8 Many
Z-System operations automatically refer to this directory. For example,

7All addresses are given in hexadecimal form and assume that the program begins
at an address of 0100.
8Don’t confuse this root directory with a directory that happens to have the

name ROOT. The latter is simply a name and confers no special significance on the
directory.

70 CHAPTER 6. TECHNICAL REFERENCE

the ZCPR34 command processor is usually configured to look in the root
directory for the extended command processor, and ARUNZ and ZFILER
look there for their CMD files.9 NZCOM uses the root of this internal path
as the place to keep the files NZCOM.CCP and NZCPM.COM.

On the other hand, the directory set up as the root often contains the
most frequently used programs, and one generally wants the command
search to look there early if not first. Thus NZCOM is set up to look
in A0 first and to use it as the root. Path expressions involving dollar
signs can also give rise to duplicated directories in the path. In the
standard configuration, the path will have three entries of A0 when the
user is logged into A0. If the first search of a directory does not turn up
a sought-after file, looking a second or third time surely will not help.
Both NZCOM and the ZCPR34 command processor are smart enough to
eliminate duplicate searches by using what is called a “minpath”. The
minpath is the search path after all duplicates have been removed.

6.4.2 The Default Options

NZCOM can be set up to assume either Q or V and either Z or R as the
default option for those two pairs of options. The verbose option flag
VOPT is stored at address 068D. A value of 00 selects quiet mode as the
default; a value of FF selects verbose mode.

The default file extension used for the ZRL-type files by NZCOM is set
by the ZOPT flag at address 068E. A value of 00 selects the R option; a
value of FF selects the Z option.

6.4.3 Startup Command Line

The startup command line run whenever the NZ-COM system is loaded
from CP/M is stored at address 0690. It consists of the characters that
comprise the command line, followed by a null (00 byte) to terminate
the command string, and then a byte of FF to terminate the entire
string.

This command line is normally set up to contain the string STARTZCM.
This program will then be an alias that can contain many other com-
mands. This approach makes it easier to change the startup commands

9The versions of ARUNZ and ZFILER supplied with NZ-COM have been configured
to look for their CMD files in the root directory. Those programs can, if desired, be
configured to use a different directory.

6.4. PATCHING NZCOM.COM 71

than if a complex set of commands were all hard coded into NZCOM.COM.
There is just enough room in NZCOM.COM — without overwriting the
copyright notice — for an 8-character command name. Some amount
of the copyright notice can be overwritten by the command line if you
simply insist on including a longer command line (or take perverse
pleasure in defacing copyright notices).

Configuration Program Patch

NZCOM.COM has a special configuration program patch area into which
advanced users can load code to perform special operations in addition
to those normally carried out by NZCOM. This patch area begins at ad-
dress 0280H and extends for 1K bytes through address 067FH. Users will
undoubtedly come up with many creative applications for this facility.

We envision using it to provide special patching when “above-BIOS”
system extensions, such as DateStamper and/or BYE, are running in an
NZ-COM system. With those programs it is necessary to extract infor-
mation about how they are hooked into the currently running system
and then to reestablish those hooks after a new system has been loaded
(but before it starts to run). We will not try to explain how to do these
things here; we will try to give you enough information about this patch
area that you can make use of it if you have the necessary programming
skills.

NZCOM issues CALL instructions to the code at address 0280H at several
points in its operation, using the Z80 registers to pass information to the
configuration routine. In particular, the value passed in the A register
indicates from which the point in the sequence of tasks performed by
NZCOM the call originated. The following calls are defined at present:

A=0 NZCOM has just started to run and has determined that
an NZ-COM system is not currently running. No files
have been loaded at this point.

A=1 NZCOM has just started to run and has determined that
an NZ-COM system is currently running. No files have
been loaded at this point.

72 CHAPTER 6. TECHNICAL REFERENCE

A=2 All the designated or required default modules have
been loaded into a working buffer and are ready for
loading to their run-time addresses. No modifications
have been made yet to the running operating system.

A=3 The modules have been copied as needed from the
working buffer to their run-time locations, and NZCOM
is ready to initiate a cold boot of the new system.

A=0FFH NZCOM has determined that no new system is to be
loaded. This call will occur if the new system specified
does not differ from the currently running system in
any way that requires anything to be loaded. It will
also occur if an error is detected that requires aborting
the operation of NZCOM.

The first two calls are provided in case some code in the configuration
patch needs to be initialized before other calls occur or when other op-
erations of the configuration routine need to know what kind of system
is currently running.

Additional information is provided in other Z80 registers. The HL regis-
ter pair points to the working buffer WRTBUF where NZCOM is composing
the new system. The environment descriptor for the new system is
in the block of code from 0100H to 017FH. The information contained
there together with the address of WRTBUF can be used to calculate
where each module is located in the working buffer.

The DE register pair points to a string of bytes with information about
the load status. At present the string contains two bytes. The first is
called MODLST (module list). Each of its eight bits is used to indicate
whether changes in the system configuration require the loading of a
corresponding module. The function of each bit is defined in Table 6.3.
The second byte is called SEGLST (segment list). Each bit indicates
whether a change in one of the system segments listed in Table 6.4
requires some action by the NZCOM loader.

Except when a call is made with a value of 3 in the A register, the
old operating system is still in place and functional. The configuration
code can, therefore, make use of operating system calls to perform its
tasks. If it determines, for example, that the NZCOM operation should
be aborted, it can do so by jumping to address 0000H to initiate a warm
boot.

6.5. THE JETLDR PROGRAM 73

0 CCP

1 DOS

2 BIOS

3 IOP

4 RCP

5 FCP

6 NDR

7 Z3T

Table 6.3: System segment corresponding to each bit in MODLST byte.

0 shell stack
1 message buffer
2 external FCB
3 command search path
4 wheel byte
5 command line buffer address
6 reserved
7 reserved

Table 6.4: System segment corresponding to each bit in SEGLST byte.

One should be very careful with any code that is performed on a call to
the configuration routine with A=3. At this point the new system has
been loaded into its run-time location, but it has not been initialized
and must not be used in any way.10

6.5 The JetLDR Program

Included with the NZ-COM package is a special program called JetLDR.
This program is an extremely powerful general-purpose module loading
program. All of the usual module loading functions required for the

10If you are clever, you can figure out the location of the real BIOS (as opposed
to the NZ-COM virtual BIOS) and can make appropriate calls to it. When NZCOM is
running under an existing NZ-COM system, the word at address 0101H is the address
of the CONST routine of the real BIOS.

74 CHAPTER 6. TECHNICAL REFERENCE

NZ-COM system can be performed by NZCOM.COM. However, the JetLDR
program is extensible using special configuration or CFG files. These
are modules which JetLDR loads into itself and which control the way
it loads other modules. This facility can give JetLDR the ability to load
special modules, such as resident system extensions (RSXs).

JetLDR has a built-in help screen that can be invoked using the standard
command

JETLDR //<cr>

6.6 The MKZCM Command Line

Fortunately, there is not very much that has to be said about the MKZCM
command syntax because it is so simple. The command line format is

MKZCM [name]<cr>

The optional token “name” — to be used as the name for the ZCM and
ENV descriptor files created by MKZCM — can be included on the com-
mand line if you know in advance what you want to call the new system
descriptor. However, there is little advantage to using this option. If
you do not give the name on the command line, then MKZCM will prompt
you for it when you tell it to save the system description. If you decide
to abort the system definition process and not save the information,
then you have saved yourself some typing! More importantly, should
you, during the definition process, change your mind about the name
you want to use, your options are still open. If you included a name on
the command line, you are stuck with it!

6.7 Theory of Operation

NZ-COM is a special form of Resident System Extension (RSX) that is
loaded into high memory just below the CP/M BIOS. It includes the
following modules:

command processor
disk operating system
warm-boot intercept

6.7. THEORY OF OPERATION 75

Z-System resident segments:
external environment description
terminal capabilities buffer
message buffer
path
wheel byte
external file control block
multiple command line
shell stack
external command processor stack

optional Z-System segment buffers
named-directory register
resident command package
flow command package
input/output command package

The warm boot intercept code initializes the disk system in the usual
way but reloads the command processor not from the system tracks
but from a file called NZCOM.CCP. When the system is removed by
NZCPM.COM, the original DOS module and the original warm boot vector
are restored. The host CP/M system then takes over and reloads its
standard command processor from the system tracks.

When a new NZ-COM system is loaded while another system is already
running, NZCOM saves the state of the current Z-System environment,
determines what changes are required (e.g., a different-sized buffer),
relocates and installs new packages, and restores the unchanged com-
ponents of the environment.

76 CHAPTER 6. TECHNICAL REFERENCE

Chapter 7

Bibliography

In an evolving, improving environment the documentation always lags
behind practice. Here we recommend several sources of additional in-
formation about Z-System. Unfortunately, in the years since NZCOM
was released, many sources of support have faded away. In the 1993
edition of this manual, notes were added below to bring the information
more up-to- date.

7.1 The Z-Nodes

The most current information about Z-System tools and standards and
the latest versions of the freely distributed programs are to be found
on the Z-System remote access systems (RASs), called Z-Nodes. These
“bulletin boards” are also good places to find friendly help from fellow
users. The crunched file ZNODESxx.LZT contains a list of the Z-Nodes
operating.

Of these Z-Nodes we want to call special attention to two (both are ac-
cessible using Telenet’s PC-Pursuit service). The first is Z-Node #2 in
Los Angeles at (213)-670-9465, the oldest node in continuous operation.

Jay Sage, one of the architects of NZCOM and author of ZCPR34 (the
command processor for NZCOM), is the sysop of Z-Node #3 in the Boston
area. Its phone number is (617)-965-7259. Unlike most remote access
systems, it is an open system, with no individual user registration or
passwords and only public messages between users. There is, however,

77

78 CHAPTER 7. BIBLIOGRAPHY

a general system password designed to allow access only to users of
Z-System-compatible computers. This password is “DDT”, the name of
the debugging utility supplied with CP/M-2.2 (if you read the prompt
carefully, you will see that it tells what this password is). As of October,
1993, Jay’s node was in failing health (advanced disk disease). Support
for Z-System will be migrating to his multi-line DOS BBS system at
(617)-965-7046.

7.2 The Computer Journal

An excellent ongoing source of Z-System material is The Computer
Journal (TCJ), perhaps the last of the major hobbiest computer maga-
zines with significant coverage of 8-bit systems. It has regular columns
and special articles by Z-System experts. Jay Sage has not missed an
issue since he started writing for them many years ago. A subscription
is highly recommended! Contact the publisher, Bill Kibler, at P.O. Box
535, Lincoln, CA 95648-0535.

Many of Jay Sage’s and Bridger Mitchell’s columns from TCJ have
been released in disk form. Some are included with the NZCOM package.
The files are all crunched to save space (see page 36 for a discussion of
how to handle crunched files). Here is a list of the files available with
an indication of the information in each one that may be of particular
interest:

TCJ26 .MZG optimizing a floppy-disk-based system
TCJ27 .MZG aliases and shells
TCJ28 .MZG recursive aliases
TCJ29 .MZG the ZCPR33 command processor
TCJ30 .MZG SALIAS and VLU
TCJ31 .MZG ARUNZ documentation
TCJ32 .MZG NZCOM/Z3PLUS/ZCPR34 information
TCJ33UPD.MZG ALIAS.CMD information
TCJ34 .WZ ZCPR-filetypes and programmer’s information
TCJ34BMM.WZ Z3PLUS- and RSX - information
TCJ35 .WZ shells and commandline information
TCJ35BMM.WZ Z3PLUS programmer’s-information
TCJ36BMM.WZ Z3PLUS programmer’s-information
TCJ37 .WZ NZ-COM/Z3PLUS/ZFILER information
TCJ37BMM.WZ Z3PLUS BDOS + console progr. info
TCJ38 .CZL ZEX shell + command information

7.3. OTHER PUBLISHED INFORMATION 79

TCJ38BM .WZ ZEX ZEX + interrupt information
TCJ38BMM.WZ ZEX ZEX + batch processing
TCJ39 .WZ NZ-COM NZ-COM programmer’s info
TCJ42 .WZ NZ-COM NZ-COM + system security
TCJ42lM .WZ NZ-COM/BYE NZ-COM environment + BYE
TCJ43 .WZ NZ-COM NZ-COM environment
TCJ49 .WZ NZ-COM NZ-COM environment adjustment
TCJ52 .WZ programming for compatibility
TCJ53 .WZ NZ-COM NZ-COM Virtual BIOS

Another source of on-going support is The Z Letter, a newsletter pub-
lished by David McGlone. For subscription information, contact him
at Lambda Software Publishing, 149 Hilliard Lane, Eugene, OR 97404-
3057.

7.3 Other Published Information

For other printed information about Z-System, we recommend the fol-
lowing books.

Read first:

The Z-System User’s Guide (Bruce Morgen, Richard Jacob-
son). This is an introduction to the Z-System that tries to
be comprehensible to the less technical user of Z-System.
[unfortunately, no longer available]

Then read:

The ZCPR 3.3 User’s Guide (Jay Sage). This is the manual
that accompanied the ZCPR version 3.3 command processor.
It includes many examples of how the features of Z-System
can be used to advantage. Extended command processing
and security features, in particular, are covered. Almost all
of this information applies to ZCPR version 3.4.

An older reference, with information that is no longer always current,
is:

80 CHAPTER 7. BIBLIOGRAPHY

ZCPR3: The Manual (Richard Conn). This was the bible
for ZCPR3, but much of the material is now out of date.
The treatments of the Z-System HELP facility, the menu
shells, and TCAPs (terminal capability descriptors, including
the utilities TCSELECT, TCMAKE, and TCCHECK) are still very
useful. [probably no longer in print]

For the technically inclined who want to write their own Z-System
programs, the following book, along with the relocatable subroutine
libraries code, will be extremely useful:

ZCPR3: The Libraries (Richard Conn). This book provides
complete documentation on the hundreds of pre-written
(and debugged) subroutines that make writing Z-System
programs in assembly language almost as easy as writing in
a high-level language. Contact Jay Sage for copies.

